Maximal finite orders of linear automata over arbitrary field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 71-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If input and output alphabets of a Mealy automaton coincide, then one can study the order problem with respect to the superposition operation. The present paper provides exact upper bounds on orders of linear automata over any field.
@article{VMUMM_2024_5_a8,
     author = {N. V. Muravev},
     title = {Maximal finite orders of linear automata over arbitrary field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {71--73},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a8/}
}
TY  - JOUR
AU  - N. V. Muravev
TI  - Maximal finite orders of linear automata over arbitrary field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 71
EP  - 73
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a8/
LA  - ru
ID  - VMUMM_2024_5_a8
ER  - 
%0 Journal Article
%A N. V. Muravev
%T Maximal finite orders of linear automata over arbitrary field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 71-73
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a8/
%G ru
%F VMUMM_2024_5_a8
N. V. Muravev. Maximal finite orders of linear automata over arbitrary field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 71-73. http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a8/

[1] Gillibert P., “An automaton group with undecidable order and Engel problems”, J. Algebra, 497 (2018), 363–392 | DOI

[2] Muravev N.V., “Razreshimost zadachi opredeleniya poryadka lineinogo avtomata”, Intellektualnye sistemy. Teoriya i prilozheniya, 24:2 (2020), 145–155

[3] Muravev N.V., “O poryadkakh lineinykh nad polem ratsionalnykh chisel avtomatov”, Intellektualnye sistemy. Teoriya i prilozheniya, 24:4 (2020), 119–124

[4] Muravev N.V., “Otsenki poryadkov lineinykh avtomatov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 6, 8–14 | DOI

[5] Gill A., Lineinye posledovatelnostnye mashiny, Nauka, M., 1974

[6] Grigorchuk R.I., Nekrashevich V.V., Suschanskii V.I., “Avtomaty, dinamicheskie sistemy i gruppy”, Dinamicheskie sistemy, avtomaty i beskonechnye gruppy, Sb. statei, Tr. Matem. in-ta RAN, 231, 2000, 134–214

[7] Kudryavtsev V.B., Aleshin S.V., Podkolzin A.S., Vvedenie v teoriyu avtomatov, Nauka, M., 1985

[8] Aleshin S.V., Algebraicheskie sistemy avtomatov, MAKS Press, M., 2016

[9] Babin D.N., “Avtomaty s lineinymi perekhodami”, Intellektualnye sistemy. Teoriya i prilozheniya, 23:3 (2019), 87–95

[10] Chasovskikh A.A., “O polnote v klasse lineinykh avtomatov”, Matem. voprosy kibernetiki, 3 (1991), 140–166