Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an axisymmetric analog of the Zhukovsky integrable case for the Lie algebra $e(2,1)$. Bifurcation diagrams are constructed. They essentially depend both on the constant parameters of the system and on the values of the Casimir functions, which are analogues of the geometric integral and the area integral. The critical set of the system is studied, and the nondegeneracy of its points is checked. Analogues of the Fomenko 3-atoms of the system are determined and it is shown that all of them have the type of direct product of the 2-dimensional base and the 1-dimensional fiber. Non-compact non-critical bifurcations are discovered in the system.
@article{VMUMM_2024_5_a0,
     author = {E. S. Agureeva and V. A. Kibkalo},
     title = {Topological analysis of axisymmetric {Zhukovsky} system for the case of the {Lie} algebra $e(2,1)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--16},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a0/}
}
TY  - JOUR
AU  - E. S. Agureeva
AU  - V. A. Kibkalo
TI  - Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 3
EP  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a0/
LA  - ru
ID  - VMUMM_2024_5_a0
ER  - 
%0 Journal Article
%A E. S. Agureeva
%A V. A. Kibkalo
%T Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 3-16
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a0/
%G ru
%F VMUMM_2024_5_a0
E. S. Agureeva; V. A. Kibkalo. Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2024), pp. 3-16. http://geodesic.mathdoc.fr/item/VMUMM_2024_5_a0/

[1] Smeil S., “Topologiya i mekhanika”, Uspekhi matem. nauk, 27:2 (1972), 77–133

[2] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51

[3] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (1989), 145–173

[4] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR, 54:3 (1990), 546–575

[5] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999

[6] Bolsinov A.V., Rikhter P.Kh., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. sb., 191:2 (2000), 3–42 | DOI

[7] Zhukovskii N.E., “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu”, Sobr. soch., v. 2, M.–L., 1949, 152–309

[8] Komarov I.V., “Bazis Kovalevskoi dlya atoma vodoroda”, Teor. matem. fiz., 47:1 (1981), 67–72

[9] Khagigatdust G., Oshemkov A.A., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Sokolova na algebre Li so(4)”, Matem. sb., 200:6 (2009), 119–142 | DOI

[10] Novikov D.V., “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li so(3,1)”, Matem. sb., 205:8 (2014), 41–66 | DOI

[11] Kozlov I.K., “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572 | DOI

[12] Kibkalo V.A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 210:5 (2019), 625–662 | DOI

[13] Kibkalo V., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3, 1)”, Topol. and its Appl., 275 (2020), 107028 | DOI

[14] Fedoseev D.A., Fomenko A.T., “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci., 248 (2020), 810–827 | DOI

[15] Kudryavtseva E.A., “Analog teoremy Liuvillya dlya integriruemykh gamiltonovykh sistem s nepolnymi potokami”, Dokl. RAN, 445:4 (2012), 383–385

[16] Novikov D.V., “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li e(3)”, Matem. sb., 202:5 (2011), 127–160 | DOI

[17] Nikolaenko S.S., “Topologicheskaya klassifikatsiya gamiltonovykh sistem na dvumernykh nekompaktnykh mnogoobraziyakh”, Matem. sb., 211:8 (2020), 68–101 | DOI

[18] Nikolaenko S.S., “Topologicheskaya klassifikatsiya nekompaktnykh 3-atomov s deistviem okruzhnosti”, Chebyshevskii sb., 22:5 (2021), 185–197 | DOI

[19] Vedyushkina V.V. (Fokicheva), Fomenko A.T., “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI

[20] Borisov A.V., Mamaev I.S., “Rigid body dynamics in non-Euclidean spaces”, Rus. J. Math. Phys., 23:4 (2016), 431–454 | DOI

[21] Kibkalo V.A., “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | DOI

[22] Kibkalo V.A., “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88 | DOI

[23] Altuev M.K., Kibkalo V.A., “Topologicheskii analiz psevdoevklidova volchka Eilera pri osobykh znacheniyakh parametrov”, Matem. sb., 214:3 (2023), 54–70 | DOI

[24] Bolsinov A.V., Guglielmi L., Kudryavtseva E.A., “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems with two degrees of freedom”, Phil. Trans. Roy. Soc. A: Math., Phys. Eng. Sci., 376:2131 (2018), 20170424 | DOI

[25] Kibkalo V.A., “Parabolichnost vyrozhdennykh osobennostei v osesimmetrichnykh sistemakh Eilera s girostatom”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 1, 25–32 | DOI