Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains solution of the problem of classification of three-dimensional left-symmetric algebras satisfying the following additional condition: the coefficients of the characteristic polynomial of the operator $L^i_k(x)= \sum a^i_{ks}x^s$, where $a^i_{ks}$ are the structural constants of the algebra, are functionally independent polynomials of $x^1,\dots, x^n$.
@article{VMUMM_2024_4_a8,
     author = {S. D. Degtiareva},
     title = {Classification of three-dimensional linear {Nijenhuis} operators with functionally independent invariants},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/}
}
TY  - JOUR
AU  - S. D. Degtiareva
TI  - Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 63
EP  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/
LA  - ru
ID  - VMUMM_2024_4_a8
ER  - 
%0 Journal Article
%A S. D. Degtiareva
%T Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 63-67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/
%G ru
%F VMUMM_2024_4_a8
S. D. Degtiareva. Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/