Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper contains solution of the problem of classification of three-dimensional left-symmetric algebras satisfying the following additional condition: the coefficients of the characteristic polynomial of the operator $L^i_k(x)= \sum a^i_{ks}x^s$, where $a^i_{ks}$ are the structural constants of the algebra, are functionally independent polynomials of $x^1,\dots, x^n$.
@article{VMUMM_2024_4_a8,
     author = {S. D. Degtiareva},
     title = {Classification of three-dimensional linear {Nijenhuis} operators with functionally independent invariants},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--67},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/}
}
TY  - JOUR
AU  - S. D. Degtiareva
TI  - Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 63
EP  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/
LA  - ru
ID  - VMUMM_2024_4_a8
ER  - 
%0 Journal Article
%A S. D. Degtiareva
%T Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 63-67
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/
%G ru
%F VMUMM_2024_4_a8
S. D. Degtiareva. Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/

[1] Konyaev A.Yu., “Nijenhuis geometry II: Left-symmetric algebras and linearization problem for Nijenhuis operators”, Diff. Geom. and its Appl., 74 (2021) | MR | Zbl

[2] Burde D., de Graaf W., “Classification of Novikov algebras”, AAECC, 24 (2013), 1–15 | DOI | MR | Zbl

[3] Bolsinov A., Matveev V.S., Miranda E., Tabachnikov S., “Open problems, questions and challenges in finitedimen- sional integrable systems”, Phil. Trans. Roy. Soc. A, 376 (2018) | MR

[4] Winterhalder A., Linear Nijenhuis-tensors and the construction of integrable systems, 1997, arXiv: 9709008

[5] Bolsinov A.V., Konyaev A.Yu., Matveev V.S., “Nijenhuis geometry”, Adv. Math., 394 (2022) | DOI | MR | Zbl

[6] Korotkevich A.A., “Integriruemye gamiltonovy sistemy na algebrakh Li maloi razmernosti”, Matem. sb., 200:12 (2009), 3–40 | DOI | MR | Zbl