Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper contains solution of the problem of classification of three-dimensional left-symmetric algebras satisfying the following additional condition: the coefficients of the characteristic polynomial of the operator $L^i_k(x)= \sum a^i_{ks}x^s$, where $a^i_{ks}$ are the structural constants of the algebra, are functionally independent polynomials of $x^1,\dots, x^n$.
@article{VMUMM_2024_4_a8,
author = {S. D. Degtiareva},
title = {Classification of three-dimensional linear {Nijenhuis} operators with functionally independent invariants},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {63--67},
publisher = {mathdoc},
number = {4},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/}
}
TY - JOUR AU - S. D. Degtiareva TI - Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 63 EP - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/ LA - ru ID - VMUMM_2024_4_a8 ER -
%0 Journal Article %A S. D. Degtiareva %T Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2024 %P 63-67 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/ %G ru %F VMUMM_2024_4_a8
S. D. Degtiareva. Classification of three-dimensional linear Nijenhuis operators with functionally independent invariants. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 63-67. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a8/