The polynomials of mixed degree in problems of micropolar theory of elasticity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 52-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a variational principle of Lagrange, the Ritz method with generalized reduced and selective integration for mixed piecewise polynomial functions are used to obtain a stiffness matrix and a system of linear algebraic equations for micropolar theory of elasticity. This approach is implemented for anisotropic, isotropic and centrally symmetric material in case of non isothermal process. The cube problem is considered. The performance for finite element with mixed piecewise polynomial functions is exposed.
@article{VMUMM_2024_4_a6,
     author = {A. V. Romanov},
     title = {The polynomials of mixed degree in problems of micropolar theory of elasticity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--57},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - The polynomials of mixed degree in problems of micropolar theory of elasticity
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 52
EP  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/
LA  - ru
ID  - VMUMM_2024_4_a6
ER  - 
%0 Journal Article
%A A. V. Romanov
%T The polynomials of mixed degree in problems of micropolar theory of elasticity
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 52-57
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/
%G ru
%F VMUMM_2024_4_a6
A. V. Romanov. The polynomials of mixed degree in problems of micropolar theory of elasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 52-57. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/

[1] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR

[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[4] Eringen A.C., Microcontinuum Field Theories, v. 1, Foundation and Solids, Springer-Verlag, N.Y., 1999 | MR | Zbl

[5] Nikabadze M.U., Razvitie metoda ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU im. M.V. Lomonosova, M., 2014

[6] Nikabadze M., Ulukhanyan A., “Some variational principles in the three-dimensional micropolar theories of solids and thin solids”, Theoretical Analyses, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, 175, Switzerland, 2022, 193–251 | DOI | MR

[7] Nikabadze M., Ulukhanyan A., “On some variational principles in micropolar theories of single-layer thin bodies”, Continuum Mechanics and Thermodynamics (Germany), 2022 | MR

[8] Nikabadze M., Ulukhanyan A., “Generalized Reissner-type variational principle in the micropolar theories of multilayer thin bodies with one small size”, Continuum Mechanics and Thermodynamics. Germany, 34:2 (2022) | MR

[9] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae transversalno-izotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 4, 35–39

[10] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae ortotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 1, 68–72 | DOI

[11] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti pri neizotermicheskikh protsessakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 2, 64–68 | DOI

[12] Kunin I.A., Teoriya uprugikh sred s mikrostrukturoi: Nelokalnaya teoriya uprugosti, Nauka, M., 1975

[13] Eringen A.K., Teoriya mikropolyarnoi uprugosti. Razrushenie, v. 2, Matematicheskie osnovy teorii razrusheniya, ed. G. Libovits, Mir, M., 1975, 646–751

[14] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The Finite Element Method: Its Basis and Fundamentals, 7th ed., Butterworth-Heinemann, Oxford, 2013 | MR | Zbl

[15] Romanov A.V., “Primenenie metoda redutsirovannogo i selektivnogo integrirovaniya v zadachakh mikropolyarnoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2024, no. 1, 65–69 | DOI

[16] Lakes R.S., “Experimental methods for study of Cosserat elastic solids and other generalized continua”, Continuum Models for Materials with Micro-structure, ed. H. Muhlhaus, J. Wiley, N.Y., 1995, 1–22

[17] Lakes R.S., “Experimental microelasticity of two porous solids”, Int. J. Solids and Struct., 1986, no. 1, 55–63 | DOI

[18] Lakes R.S., “Cosserat micromechanics of structured media: Experimental methods”, Proc. Amer. Soc. Composites. 3rd Technical Conf. (Sept. 25–29. Seatle, 1988), 1988, 505–516