The polynomials of mixed degree in problems of micropolar theory of elasticity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 52-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a variational principle of Lagrange, the Ritz method with generalized reduced and selective integration for mixed piecewise polynomial functions are used to obtain a stiffness matrix and a system of linear algebraic equations for micropolar theory of elasticity. This approach is implemented for anisotropic, isotropic and centrally symmetric material in case of non isothermal process. The cube problem is considered. The performance for finite element with mixed piecewise polynomial functions is exposed.
@article{VMUMM_2024_4_a6,
author = {A. V. Romanov},
title = {The polynomials of mixed degree in problems of micropolar theory of elasticity},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--57},
publisher = {mathdoc},
number = {4},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/}
}
TY - JOUR AU - A. V. Romanov TI - The polynomials of mixed degree in problems of micropolar theory of elasticity JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 52 EP - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/ LA - ru ID - VMUMM_2024_4_a6 ER -
A. V. Romanov. The polynomials of mixed degree in problems of micropolar theory of elasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 52-57. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/