@article{VMUMM_2024_4_a6,
author = {A. V. Romanov},
title = {The polynomials of mixed degree in problems of micropolar theory of elasticity},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--57},
year = {2024},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/}
}
A. V. Romanov. The polynomials of mixed degree in problems of micropolar theory of elasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 52-57. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a6/
[1] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR
[2] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975
[4] Eringen A.C., Microcontinuum Field Theories, v. 1, Foundation and Solids, Springer-Verlag, N.Y., 1999 | MR | Zbl
[5] Nikabadze M.U., Razvitie metoda ortogonalnykh polinomov v mekhanike mikropolyarnykh i klassicheskikh uprugikh tonkikh tel, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU im. M.V. Lomonosova, M., 2014
[6] Nikabadze M., Ulukhanyan A., “Some variational principles in the three-dimensional micropolar theories of solids and thin solids”, Theoretical Analyses, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, 175, Switzerland, 2022, 193–251 | DOI | MR
[7] Nikabadze M., Ulukhanyan A., “On some variational principles in micropolar theories of single-layer thin bodies”, Continuum Mechanics and Thermodynamics (Germany), 2022 | MR
[8] Nikabadze M., Ulukhanyan A., “Generalized Reissner-type variational principle in the micropolar theories of multilayer thin bodies with one small size”, Continuum Mechanics and Thermodynamics. Germany, 34:2 (2022) | MR
[9] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae transversalno-izotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 4, 35–39
[10] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti v sluchae ortotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 1, 68–72 | DOI
[11] Romanov A.V., “O variatsionnom printsipe Lagranzha mikropolyarnoi teorii uprugosti pri neizotermicheskikh protsessakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 2, 64–68 | DOI
[12] Kunin I.A., Teoriya uprugikh sred s mikrostrukturoi: Nelokalnaya teoriya uprugosti, Nauka, M., 1975
[13] Eringen A.K., Teoriya mikropolyarnoi uprugosti. Razrushenie, v. 2, Matematicheskie osnovy teorii razrusheniya, ed. G. Libovits, Mir, M., 1975, 646–751
[14] Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The Finite Element Method: Its Basis and Fundamentals, 7th ed., Butterworth-Heinemann, Oxford, 2013 | MR | Zbl
[15] Romanov A.V., “Primenenie metoda redutsirovannogo i selektivnogo integrirovaniya v zadachakh mikropolyarnoi teorii uprugosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2024, no. 1, 65–69 | DOI
[16] Lakes R.S., “Experimental methods for study of Cosserat elastic solids and other generalized continua”, Continuum Models for Materials with Micro-structure, ed. H. Muhlhaus, J. Wiley, N.Y., 1995, 1–22
[17] Lakes R.S., “Experimental microelasticity of two porous solids”, Int. J. Solids and Struct., 1986, no. 1, 55–63 | DOI
[18] Lakes R.S., “Cosserat micromechanics of structured media: Experimental methods”, Proc. Amer. Soc. Composites. 3rd Technical Conf. (Sept. 25–29. Seatle, 1988), 1988, 505–516