Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 42-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We proceed the systematic analytical study of the nonlinear Maxwell-type constitutive equation for shear flow of tixotropic viscoelastic media formulated in the previous article. It accounts for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. The constitutive equation is governed by an increasing material function and six positive parameters. Assuming stress is constant (in order to simulate creep conditions), we formulate the set of two nonlinear differential equations for two unknown functions (namely, strain and cross-links density) and obtain its exact general solution in explicit form. We examine the properties of creep curves generated by the model for arbitrary material function and material parameters and analyze dependence of creep curves and cross-links density on time, stress level, initial cross-links density and material parameters governing the model. Thus, we prove that the model not only describes basic phenomena observed for simple shear flow of shear thinning fluids but it is capable to simulate creep, relaxation and other phenomena observed for solid bodies.
@article{VMUMM_2024_4_a5,
     author = {A. V. Khokhlov},
     title = {Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--51},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 42
EP  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/
LA  - ru
ID  - VMUMM_2024_4_a5
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 42-51
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/
%G ru
%F VMUMM_2024_4_a5
A. V. Khokhlov. Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 42-51. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/

[1] Vinogradov G.V., Malkin A.Ya., Reologiya polimerov, Khimiya, M., 1977

[2] Larson R.G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988

[3] Leonov A.I., Prokunin A.N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994

[4] Larson R.G., Structure and Rheology of Complex Fluids, Oxford Press, N.Y., 1999

[5] Gupta R.K., Polymer and Composite Rheology, Marcel Dekker, N.Y., 2000

[6] Graessley W.W., Polymeric Liquids and Networks: Dynamics and Rheology, Garland Science, London, 2008

[7] Malkin A.Y., Isayev A.I., Rheology: Conceptions, Methods, Applications, 2nd ed., ChemTec Publishing, Toronto, 2012

[8] Stolin A.M., Khokhlov A.V., “Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis”, Moscow Univ. Mech. Bull., 77:5 (2022), 127–135 | DOI | Zbl

[9] Khokhlov A.V., “Tochka ravnovesiya i fazovyi portret modeli techeniya tiksotropnykh sred, uchityvayuschei evolyutsiyu struktury”, Vestn. Mosk. un-ta. Matem. Mekhan., 78:4 (2023), 30–39 | DOI

[10] Khokhlov A.V., Gulin V.V., “Analiz svoistv nelineinoi modeli sdvigovogo techeniya tiksotropnykh vyazkouprugoplastichnykh sred, uchityvayuschei vzaimnoe vliyanie evolyutsii struktury i protsessa deformirovaniya”, Fiz. mezomekhan., 26:4 (2023), 41–63 | DOI

[11] Khokhlov A.V., “Krivye dlitelnoi prochnosti nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella i pravilo summirovaniya povrezhdennosti pri stupenchatykh nagruzheniyakh”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:3 (2016), 524–543 | DOI | Zbl

[12] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: svoistva semeistva krivykh relaksatsii i ogranicheniya na materialnye funktsii”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2017, no. 6, 31–55 | DOI

[13] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI | Zbl

[14] Khokhlov A.V., “A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings”, Moscow Univ. Mech. Bull., 73:2 (2018), 39–42 | DOI | Zbl

[15] Khokhlov A.V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastovisco- plastic model using loading–unloading curves”, Mech. Compos. Materials, 55:2 (2019), 195–210 | DOI

[16] Khokhlov A.V., “Possibility to describe the alternating and non-monotonic time dependence of Poisson's ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model”, Russ. Metallurgy (Metally), 2019, no. 10, 956–963 | DOI

[17] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI

[18] Khokhlov A.V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI

[19] Han C.D., Rheology and Processing of Polymeric Material, v. 1, 2, Oxford University Press, Oxford, 2007

[20] Denn M.M., Polymer Melt Processing, Cambridge University Press, Cambridge, 2008

[21] Kamal M., Isayev A., Liu S., Injection Molding Fundamentals and Applications, Hanser, Munich, 2009

[22] Leblanc J.L., Filled Polymers, CRC Press, Boca Raton, 2010

[23] Novikov I.I., Portnoi V.K., Sverkhplastichnost splavov s ultramelkim zernom, Metallurgiya, M., 1981

[24] Nieh T.G., Wadsworth J., Sherby O.D., Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 1997

[25] Padmanabhan K.A., Vasin R.A., Enikeev F.U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001

[26] Segal V.M., Beyerlein I.J., Tome C.N., Chuvil'deev V.N., Kopylov V.I., Fundamentals and Engineering of Severe Plastic Deformation, Nova Science Pub. Inc., N.Y., 2010

[27] Zhilayev A.P., Pshenichnyuk A.I., Superplasticity and grain boundaries in ultrafine-grained materials, Cambridge Int. Sci. Publ., Cambridge, 2010

[28] Chuvildeev V.N., Schavleva A.V., Nokhrin A.V. i dr., “Vliyanie razmera zerna i strukturnogo sostoyaniya granits zeren na parametry nizkotemperaturnoi i vysokoskorostnoi sverkhplastichnosti nano- i mikrokristallicheskikh splavov”, Fiz. tverdogo tela, 52:5 (2010), 1026–1033

[29] Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh., Ob'emnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya, Eko-Vektor, M., 2017

[30] Ovid'ko I.A., Valiev R.Z., Zhu Y.T., “Obzor eksperimentalnykh issledovanii strukturnoi sverkhplastichnosti: evolyutsiya mikrostruktury materialov i mekhanizmy deformirovaniya”, Progr. Mater. Sci., 94 (2018), 462–540 | DOI

[31] Sharifullina E.R., Shveikin A.I., Trusov P.V., “Vliyanie razmera zerna i strukturnogo sostoyaniya granits zeren na parametry nizkotemperaturnoi i vysokoskorostnoi sverkhplastichnosti nano- i mikrokristallicheskikh splavov”, Vestn. PNIPU. Mekhanika, 2018, no. 3, 103–127

[32] Mikhaylovskaya A.V., Kishchik A.A., Kotov A.D. et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy”, Mater. Sci. Eng. A, 760 (2019), 37–46 | DOI

[33] Mochugovskiy A.G., Mosleh A.O., Kotov A.D., Khokhlov A.V., “Microstructure evolution, constitutive modelling, and superplastic forming of experimental 6XXX-type alloys processed with different thermomechanical treatments”, Materials, 16:1 (2023), 445, 18 pp. | DOI