@article{VMUMM_2024_4_a5,
author = {A. V. Khokhlov},
title = {Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {42--51},
year = {2024},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/}
}
TY - JOUR AU - A. V. Khokhlov TI - Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 42 EP - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/ LA - ru ID - VMUMM_2024_4_a5 ER -
%0 Journal Article %A A. V. Khokhlov %T Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2024 %P 42-51 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/ %G ru %F VMUMM_2024_4_a5
A. V. Khokhlov. Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 42-51. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a5/
[1] Vinogradov G.V., Malkin A.Ya., Reologiya polimerov, Khimiya, M., 1977
[2] Larson R.G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988
[3] Leonov A.I., Prokunin A.N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994
[4] Larson R.G., Structure and Rheology of Complex Fluids, Oxford Press, N.Y., 1999
[5] Gupta R.K., Polymer and Composite Rheology, Marcel Dekker, N.Y., 2000
[6] Graessley W.W., Polymeric Liquids and Networks: Dynamics and Rheology, Garland Science, London, 2008
[7] Malkin A.Y., Isayev A.I., Rheology: Conceptions, Methods, Applications, 2nd ed., ChemTec Publishing, Toronto, 2012
[8] Stolin A.M., Khokhlov A.V., “Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis”, Moscow Univ. Mech. Bull., 77:5 (2022), 127–135 | DOI | Zbl
[9] Khokhlov A.V., “Tochka ravnovesiya i fazovyi portret modeli techeniya tiksotropnykh sred, uchityvayuschei evolyutsiyu struktury”, Vestn. Mosk. un-ta. Matem. Mekhan., 78:4 (2023), 30–39 | DOI
[10] Khokhlov A.V., Gulin V.V., “Analiz svoistv nelineinoi modeli sdvigovogo techeniya tiksotropnykh vyazkouprugoplastichnykh sred, uchityvayuschei vzaimnoe vliyanie evolyutsii struktury i protsessa deformirovaniya”, Fiz. mezomekhan., 26:4 (2023), 41–63 | DOI
[11] Khokhlov A.V., “Krivye dlitelnoi prochnosti nelineinoi modeli vyazkouprugoplastichnosti tipa Maksvella i pravilo summirovaniya povrezhdennosti pri stupenchatykh nagruzheniyakh”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:3 (2016), 524–543 | DOI | Zbl
[12] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: svoistva semeistva krivykh relaksatsii i ogranicheniya na materialnye funktsii”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2017, no. 6, 31–55 | DOI
[13] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI | Zbl
[14] Khokhlov A.V., “A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings”, Moscow Univ. Mech. Bull., 73:2 (2018), 39–42 | DOI | Zbl
[15] Khokhlov A.V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastovisco- plastic model using loading–unloading curves”, Mech. Compos. Materials, 55:2 (2019), 195–210 | DOI
[16] Khokhlov A.V., “Possibility to describe the alternating and non-monotonic time dependence of Poisson's ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model”, Russ. Metallurgy (Metally), 2019, no. 10, 956–963 | DOI
[17] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI
[18] Khokhlov A.V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI
[19] Han C.D., Rheology and Processing of Polymeric Material, v. 1, 2, Oxford University Press, Oxford, 2007
[20] Denn M.M., Polymer Melt Processing, Cambridge University Press, Cambridge, 2008
[21] Kamal M., Isayev A., Liu S., Injection Molding Fundamentals and Applications, Hanser, Munich, 2009
[22] Leblanc J.L., Filled Polymers, CRC Press, Boca Raton, 2010
[23] Novikov I.I., Portnoi V.K., Sverkhplastichnost splavov s ultramelkim zernom, Metallurgiya, M., 1981
[24] Nieh T.G., Wadsworth J., Sherby O.D., Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, 1997
[25] Padmanabhan K.A., Vasin R.A., Enikeev F.U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001
[26] Segal V.M., Beyerlein I.J., Tome C.N., Chuvil'deev V.N., Kopylov V.I., Fundamentals and Engineering of Severe Plastic Deformation, Nova Science Pub. Inc., N.Y., 2010
[27] Zhilayev A.P., Pshenichnyuk A.I., Superplasticity and grain boundaries in ultrafine-grained materials, Cambridge Int. Sci. Publ., Cambridge, 2010
[28] Chuvildeev V.N., Schavleva A.V., Nokhrin A.V. i dr., “Vliyanie razmera zerna i strukturnogo sostoyaniya granits zeren na parametry nizkotemperaturnoi i vysokoskorostnoi sverkhplastichnosti nano- i mikrokristallicheskikh splavov”, Fiz. tverdogo tela, 52:5 (2010), 1026–1033
[29] Valiev R.Z., Zhilyaev A.P., Lengdon T.Dzh., Ob'emnye nanostrukturnye materialy: fundamentalnye osnovy i primeneniya, Eko-Vektor, M., 2017
[30] Ovid'ko I.A., Valiev R.Z., Zhu Y.T., “Obzor eksperimentalnykh issledovanii strukturnoi sverkhplastichnosti: evolyutsiya mikrostruktury materialov i mekhanizmy deformirovaniya”, Progr. Mater. Sci., 94 (2018), 462–540 | DOI
[31] Sharifullina E.R., Shveikin A.I., Trusov P.V., “Vliyanie razmera zerna i strukturnogo sostoyaniya granits zeren na parametry nizkotemperaturnoi i vysokoskorostnoi sverkhplastichnosti nano- i mikrokristallicheskikh splavov”, Vestn. PNIPU. Mekhanika, 2018, no. 3, 103–127
[32] Mikhaylovskaya A.V., Kishchik A.A., Kotov A.D. et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy”, Mater. Sci. Eng. A, 760 (2019), 37–46 | DOI
[33] Mochugovskiy A.G., Mosleh A.O., Kotov A.D., Khokhlov A.V., “Microstructure evolution, constitutive modelling, and superplastic forming of experimental 6XXX-type alloys processed with different thermomechanical treatments”, Materials, 16:1 (2023), 445, 18 pp. | DOI