Numerical simulation of oscillations in a cold but viscous plasma
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 32-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effect of viscosity on non-relativistic oscillations of cold plasma is numerically analyzed. For this purpose, an implicit difference scheme of the MacCormack type is constructed, which has a weaker restriction on stability in comparison with the explicit scheme. The scheme is implemented without iterations, which increases its computational efficiency tenfold. It is shown that taking into account the plasma viscosity can cause not only attenuation of the amplitude of plasma oscillations, but also a change in the shape of the solution. With an increase in the viscosity coefficient, a saddle point is observed in the solution, which is preserved in time.
@article{VMUMM_2024_4_a4,
     author = {E. V. Chizhonkov},
     title = {Numerical simulation of oscillations in a cold but viscous plasma},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--41},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a4/}
}
TY  - JOUR
AU  - E. V. Chizhonkov
TI  - Numerical simulation of oscillations in a cold but viscous plasma
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 32
EP  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a4/
LA  - ru
ID  - VMUMM_2024_4_a4
ER  - 
%0 Journal Article
%A E. V. Chizhonkov
%T Numerical simulation of oscillations in a cold but viscous plasma
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 32-41
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a4/
%G ru
%F VMUMM_2024_4_a4
E. V. Chizhonkov. Numerical simulation of oscillations in a cold but viscous plasma. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 32-41. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a4/

[1] Aleksandrov A.F., Bogdankevich L.S., Rukhadze A.A., Osnovy elektrodinamiki plazmy, Vysshaya shkola, M., 1978

[2] Ginzburg V.L., Rukhadze A.A., Volny v magnitoaktivnoi plazme, Nauka, M., 1975

[3] Silin V.P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[4] Silin V.P., Rukhadze A.A., Elektromagnitnye svoistva plazmy i plazmopodobnykh sred, 2-e izd., ispr., Knizhnyi dom LIBROKOM, M., 2012

[5] Esarey E., Schroeder C.B, Leemans W.P., “Physics of laser-driven plasma-based electron accelerators”, Rev. Mod. Phys., 81 (2009), 1229–1285 | DOI

[6] Bulanov S.V., Esirkepov T.Zh., Hayashi Y., “et al. On some theoretical problems of laser wake-field accelerators”, J. Plasma Phys., 82:3 (2016), 905820308, 55 pp. | DOI

[7] Gorbunov L.M., Zachem nuzhny sverkhmoschnye lazernye impulsy?, Priroda, 21:4 (2007), 11–20

[8] Chizhonkov E.V., Matematicheskie aspekty modelirovaniya kolebanii i kilvaternykh voln v plazme, Fizmatlit, M., 2018

[9] Skorupski A.A., Infeld E., “Nonlinear electron oscillations in a viscous and resistive plasma”, Phys. Rev. Lett. E, 81 (2010), 056406, 11 pp. | DOI

[10] Chizhonkov E.V., Frolov A.A., “Effect of electron temperature on formation of travelling waves in plasma: Kinetic and hydrodynamic models”, Russ. J. Numer. Anal. Math. Modelling, 38:2 (2023), 63–74 | DOI | MR

[11] Rozanova O., Chizhonkov E., Delova M., “Exact thresholds in the dynamics of cold plasma with electron-ion collisions”, AIP Conf. Proc., 2302:1 (2020), 060012, 12 pp. | DOI

[12] Chizhonkov E.V., Delova M.I., Rozanova O.S., “High precision methods for solving a system of cold plasma equations taking into account electron-ion collisions”, Russ. J. Numer. Anal. Math. Modelling, 36:3 (2021), 139–155 | DOI | MR | Zbl

[13] Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, 2-e izd., ispr. i dop., Fizmatlit, M., 2012

[14] MacCormack R. W., “A numerical method for solving the equations of compressible viscous flow”, AIAA J., 20:9 (1982), 1275–1281 | DOI | MR | Zbl

[15] Davidson R.C., Methods in Nonlinear Plasma Theory, Academic Press, N.Y., 1972

[16] Rozanova O.S., Chizhonkov E.V., “O suschestvovanii globalnogo resheniya odnoi giperbolicheskoi zadachi”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 492:1 (2020), 97–100 | DOI | Zbl

[17] Rozanova O.S., Chizhonkov E.V., “On the conditions for the breaking of oscillations in a cold plasma”, Z. angew. Math. und Phys., 72 (2021), 13, 15 pp. | DOI | MR | Zbl

[18] Rozanova O.S., Chizhonkov E.V., “Ob analiticheskom i chislennom reshenii odnomernykh uravnenii kholodnoi plazmy”, Zhurn. vychisl. matem. i matem. fiz., 61:9 (2021), 1508–1527 | DOI | Zbl

[19] Dafermos S.M., Hyperbolic Conservation Laws in Continuum Physics, The 4th ed., Springer, Berlin–Heidelberg, 2016 | MR | Zbl

[20] Sheppard C.J.R., “Cylindrical lenses — focusing and imaging: a review”, Appl. Opt., 52:4 (2013), 538–545 | DOI | MR

[21] Morton K.W., Sobeye I.J., “Discretization of a convection-diffusion equation”, IMA J. Numer. Anal., 13 (1993), 141–160 | DOI | MR | Zbl

[22] MacCormack R. W., “The effect of viscosity in hypervelocity impact cratering”, J. Spacecr. Rockets, 40:5 (2003), 757–763 | DOI | MR

[23] Shokin Yu.I., Yanenko N.N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985

[24] Furst J., Furmanek P., “An implicit MacCormack scheme for unsteady flow calculations”, Computers $\$ Fluids, 46 (2011), 231–236 | DOI | MR | Zbl

[25] Chizhonkov E.V., “O skhemakh vtorogo poryadka tochnosti dlya modelirovaniya plazmennykh kolebanii”, Vychisl. metody i programmir., 21 (2020), 115–128

[26] Frolov A.A., Chizhonkov E.V., “O primenenii zakona sokhraneniya energii v modeli kholodnoi plazmy”, Zhurn. vychisl. matem. i matem. fiz., 60:3 (2020), 503–519 | DOI | Zbl

[27] Verma P.S., Soni J.K., Sengupta S., Kaw P.K., “Nonlinear oscillations in a cold dissipative plasma”, Phys. Plasma, 17 (2010), 044503, 4 pp. | DOI