Estimates of modified (Eucledean) Gromov–Hausdorff distance
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 69-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gromov–Hausdorff distance $d_{GH}(X,Y)$ is well known to be bounded above and below by the diameters of the sets $X$ and $Y$. In this paper, we study the modified Gromov–Hausdorff distance and the orbits of the action of the isometry group's subgroup in Euclidean spaces. It turns out that there are similar restrictions for it, but by the Chebyshev radii of the representatives of the orbits. As a consequence, we give an estimate for the distance between the Chebyshev centers of compact sets for their optimal alignment.
@article{VMUMM_2024_4_a10,
     author = {O. S. Malysheva},
     title = {Estimates of modified {(Eucledean)} {Gromov{\textendash}Hausdorff} distance},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--73},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a10/}
}
TY  - JOUR
AU  - O. S. Malysheva
TI  - Estimates of modified (Eucledean) Gromov–Hausdorff distance
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 69
EP  - 73
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a10/
LA  - ru
ID  - VMUMM_2024_4_a10
ER  - 
%0 Journal Article
%A O. S. Malysheva
%T Estimates of modified (Eucledean) Gromov–Hausdorff distance
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 69-73
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a10/
%G ru
%F VMUMM_2024_4_a10
O. S. Malysheva. Estimates of modified (Eucledean) Gromov–Hausdorff distance. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 69-73. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a10/

[1] Gromov M., “Groups of polynomial growth and expanding maps”, Publ. math., 53 (1981), 53–73 | DOI | MR

[2] Tuzhilin A., Who invented the Gromov–Hausdorff distance?, 2016, arXiv: 1612.00728

[3] Memoli F., “Some properties of Gromov–Hausdorff distances”, Discrete Computational Geometry, 48 (2012), 416–440 | DOI | MR | Zbl

[4] Memoli F., “Gromov–Hausdorff distances in Euclidean spaces”, Computer Vision and Pattern Recognition Workshops, 2008 IEEE Computer Society Conference (Anchorage, 2008), 2008, 1–8 | MR

[5] Majhi S., Vitter J., Wenk C., Approximating Gromov–Hausdorff distance in Euclidean space, 2022, arXiv: 1912.13008 | MR

[6] Garkavi A.L., “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, Uspekhi matem. nauk, 19:6 (1964), 139–145 | MR | Zbl

[7] Sosov E.N., Geometrii vypuklykh i konechnykh mnozhestv geodezicheskogo prostranstva, Izd-vo Kazan. federal. un-ta, 2010

[8] Alimov A.R., Tsarkov I.G., “Chebyshevskii tsentr mnozhestva, konstanta Yunga i ikh prilozheniya”, Uspekhi matem. nauk, 74:5 (449) (2019), 3–82 | DOI | MR | Zbl

[9] Jung H., “Ueber die kleinste Kugel, die eine r$\ddot a$umliche Figur einschliesst”, J. reine und angew. Math., 1901:123 (1901), 241–257 | DOI | MR

[10] Burago D.Yu., Burago Yu.D., Ivanov S.V., Kurs metricheskoi geometrii, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004 | MR

[11] Malysheva O.S., “Optimalnoe polozhenie kompaktov i problema Shteinera v prostranstvakh s evklidovoi metrikoi Gromova–Khausdorfa”, Matem. sb., 211:10 (2020), 32–49 | DOI | MR | Zbl