An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its Fourier series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 13-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is given for finding the exact value of the argument of the modulus of continuity in estimates of the rate of convergence of Fourier series.
@article{VMUMM_2024_4_a1,
     author = {T. Yu. Semenova},
     title = {An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its {Fourier} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--20},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a1/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its Fourier series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 13
EP  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a1/
LA  - ru
ID  - VMUMM_2024_4_a1
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its Fourier series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 13-20
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a1/
%G ru
%F VMUMM_2024_4_a1
T. Yu. Semenova. An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2024), pp. 13-20. http://geodesic.mathdoc.fr/item/VMUMM_2024_4_a1/

[1] Kish O., “Otsenka otkloneniya chastnykh summ ryada Fure”, Acta math. Acad. ssi. hung., 22:1–2 (1971), 173–176 | Zbl

[2] Gavrilyuk V.T., “Priblizhenie nepreryvnykh periodicheskikh funktsii polinomami Rogozinskogo i summami Fure”, Voprosy teorii priblizheniya funktsii i ee prilozhenii, Kiev, 1976, 46–59

[3] Gavrilyuk V.T., “Priblizhenie nepreryvnykh periodicheskikh funktsii trigonometricheskimi polinomami”, Teoriya priblizheniya funktsii, M., 1977, 101–103 | MR | Zbl

[4] Miloradović S., Aproksimacije funckcija Fourier-ovim sumama i gorns granica Fourierovih koeficijenta, Magistarski rad, Beograd, 1977

[5] Daugavet I.K., “Ob odnom svoistve vpolne nepreryvnykh operatorov v prostranstve $C$”, Uspekhi matem. nauk, 18:5 (1963), 157–158 | MR | Zbl

[6] Stechkin S.B., “O priblizhenii nepreryvnykh periodicheskikh funktsii summami Favara”, Tr. Matem. in-ta AN SSSR, 109, 1971, 26–34 | Zbl

[7] Gavrilyuk V.T., Stechkin S.B., “Priblizhenie nepreryvnykh periodicheskikh funktsii summami Fure”, Tr. Matem. in-ta AN SSSR, 172, 1985, 107–127 | MR | Zbl

[8] Popov A.Yu., Semenova T.Yu., “Utochnenie otsenki skorosti ravnomernoi skhodimosti ryada Fure nepreryvnoi periodicheskoi funktsii ogranichennoi variatsii”, Matem. zametki, 113:4 (2023), 544–559 | DOI | Zbl

[9] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961