@article{VMUMM_2024_3_a7,
author = {V. L. Litvinov and K. V. Litvinova},
title = {An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--59},
year = {2024},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/}
}
TY - JOUR AU - V. L. Litvinov AU - K. V. Litvinova TI - An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 53 EP - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/ LA - ru ID - VMUMM_2024_3_a7 ER -
%0 Journal Article %A V. L. Litvinov %A K. V. Litvinova %T An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2024 %P 53-59 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/ %G ru %F VMUMM_2024_3_a7
V. L. Litvinov; K. V. Litvinova. An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 53-59. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/
[1] Savin G.N., Goroshko O.A., Dinamika niti peremennoi dliny, Naukova dumka, Kiev, 1962
[2] Goroshko O.A., Savin G.N., Vvedenie v mekhaniku deformiruemykh odnomernykh tel peremennoi dliny, Naukova dumka, Kiev, 1971
[3] Litvinov V.L., Anisimov V.N., Matematicheskoe modelirovanie i issledovanie kolebanii odnomernykh mekhanicheskikh sistem s dvizhuschimisya granitsami, SamGTU, Samara, 2017
[4] Kolosov L.B., Zhigula T.I., “Prodolno-poperechnye kolebaniya struny kanata pod'emnoi ustanovki”, Izv. vuzov. Gornyi zhurnal, 1981, no. 3, 83–86
[5] Zhu W.D., Chen Y., “Theoretical and experimental investigation of elevator cable dynamics and control”, J. Vibr. Acoust., 1 (2006), 66–78 | DOI
[6] Shi Y., Wu L., Wang Y., “Nelineinyi analiz sobstvennykh chastot trosovoi sistemy”, J. Vibr. Eng., 2 (2006), 173–178
[7] Wang L., Zhao Y., “Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 1–2 (2009), 1–14 | DOI
[8] Zhao Y., Wang L., “On the symmetric modal interaction of the suspended cable: three-to one internal resonance”, J. Sound Vibr., 4–5 (2006), 1073–1093 | DOI | MR
[9] Litvinov V.L., “Prodolnye kolebaniya kanata peremennoi dliny s gruzom na kontse”, Vestn. nauchno-tekhn. razvitiya, 2016, no. 1(101), 19–24 | MR
[10] Samarin Yu.P., “Ob odnoi nelineinoi zadache dlya volnovogo uravneniya v odnomernom prostranstve”, Prikl. matem. i mekhan., 26:3 (1964), 77–80
[11] Vesnitskii A.I., Volny v sistemakh s dvizhuschimisya granitsami i nagruzkami, Fizmatlit, M., 2001
[12] Litvinov V.L., Anisimov V.N., “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauch. tsentra RAN, 19:4 (2017), 161–165
[13] Erofeev V.I., Kolesov D.A., Lisenkova E.E., “Issledovanie volnovykh protsessov v odnomernoi sisteme, lezhaschei na uprugoinertsionnom osnovanii, s dvizhuscheisya nagruzkoi”, Vestn. nauchno-tekhn. razvitiya, 2013, no. 6(70), 18–29
[14] Litvinov V.L., “Poperechnye kolebaniya vyazkouprugogo kanata, lezhaschego na uprugom osnovanii, s uchetom vliyaniya sil soprotivleniya sredy”, Vestn. nauchno-tekhn. razvitiya, 2015, no. 4(92), 29–33
[15] Litvinov V.L., “Tochnoe i priblizhennoe resheniya zadachi o kolebaniyakh sterzhnya peremennoi dliny”, Vestn. nauchno-tekhn. razvitiya, 2017, no. 9(121), 46–57
[16] Anisimov V.N., Litvinov V.L., “Issledovanie rezonansnykh svoistv mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi metoda Kantorovicha–Galerkina”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiziko-matematicheskie nauki, 1:18 (2009), 149–158 | DOI | Zbl
[17] Lezhneva A.A., “Izgibnye kolebaniya balki peremennoi dliny”, Izv. AN SSSR. Mekhan. tverdogo tela, 1970, no. 1, 159–161
[18] Litvinov V.L., Anisimov V.N., “Primenenie metoda Kantorovicha–Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. RAN. Mekhan. tverdogo tela, 2018, no. 2, 70–77
[19] Litvinov V.L., “Reshenie kraevykh zadach s podvizhnymi granitsami s ispolzovaniem priblizhennogo metoda postroeniya reshenii integro-differentsialnykh uravnenii”, Tr. In-ta matematiki i mekhaniki Ural. otd. RAN, 26, no. 2, 2020, 188–199
[20] Litvinov V.L., Litvinova K.V., “Priblizhennyi metod resheniya kraevykh zadach s podvizhnymi granitsami putem svedeniya k integro-differentsialnym uravneniyam”, Zhurn. vychisl. matem. i matem. fiz., 62:6 (2022), 977–986 | Zbl
[21] Litvinov V.L., “Variatsionnaya postanovka zadachi o kolebaniyakh balki s podvizhnoi podpruzhinennoi oporoi”, Teor. i matem. fiz., 215:2 (2023), 709–715 | MR | Zbl
[22] Vesnitskii A.I., “Obratnaya zadacha dlya odnomernogo rezonatora, izmenyayuschego vo vremeni svoi razmery”, Izv. vuzov. Radiofizika, 10 (1971), 1538–1542
[23] Barsukov K.A., Grigoryan G.A., “K teorii volnovoda s podvizhnymi granitsami”, Izv. vuzov. Radiofizika, 2 (1976), 280–285
[24] Anisimov V.N., Litvinov V.L., Korpen I.V., “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiziko-matematicheskie nauki, 3(28) (2012), 145–151 | DOI | Zbl
[25] Litvinov V.L., “Reshenie kraevykh zadach s dvizhuschimisya granitsami pri pomoschi metoda zameny peremennykh v funktsionalnom uravnenii”, Zhurn. Srednevolzh. matem. o-va, 15:3 (2013), 112–119 | Zbl
[26] Anisimov V.N., Litvinov V.L., “Analiticheskii metod resheniya volnovogo uravneniya s shirokim klassom uslovii na dvizhuschikhsya granitsakh”, Vestn. nauchno-tekhn. razvitiya, 2016, no. 2(102), 28–35
[27] Koshlyakov N.S., Gliner E.B., Smirnov M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970
[28] Litvinov V.L., “Issledovanie svobodnykh kolebanii mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi asimptoticheskogo metoda”, Zhurn. Srednevolzh. matem. o-va, 16:1 (2014), 83–88 | Zbl