An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 53-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical method for solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximate method was made depending on the speed of the boundary movement.
@article{VMUMM_2024_3_a7,
     author = {V. L. Litvinov and K. V. Litvinova},
     title = {An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--59},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/}
}
TY  - JOUR
AU  - V. L. Litvinov
AU  - K. V. Litvinova
TI  - An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 53
EP  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/
LA  - ru
ID  - VMUMM_2024_3_a7
ER  - 
%0 Journal Article
%A V. L. Litvinov
%A K. V. Litvinova
%T An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 53-59
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/
%G ru
%F VMUMM_2024_3_a7
V. L. Litvinov; K. V. Litvinova. An inverse method to solve the problems on oscillations of mechanical systems with moving boundaries. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 53-59. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a7/

[1] Savin G.N., Goroshko O.A., Dinamika niti peremennoi dliny, Naukova dumka, Kiev, 1962

[2] Goroshko O.A., Savin G.N., Vvedenie v mekhaniku deformiruemykh odnomernykh tel peremennoi dliny, Naukova dumka, Kiev, 1971

[3] Litvinov V.L., Anisimov V.N., Matematicheskoe modelirovanie i issledovanie kolebanii odnomernykh mekhanicheskikh sistem s dvizhuschimisya granitsami, SamGTU, Samara, 2017

[4] Kolosov L.B., Zhigula T.I., “Prodolno-poperechnye kolebaniya struny kanata pod'emnoi ustanovki”, Izv. vuzov. Gornyi zhurnal, 1981, no. 3, 83–86

[5] Zhu W.D., Chen Y., “Theoretical and experimental investigation of elevator cable dynamics and control”, J. Vibr. Acoust., 1 (2006), 66–78 | DOI

[6] Shi Y., Wu L., Wang Y., “Nelineinyi analiz sobstvennykh chastot trosovoi sistemy”, J. Vibr. Eng., 2 (2006), 173–178

[7] Wang L., Zhao Y., “Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations”, J. Sound Vibr., 1–2 (2009), 1–14 | DOI

[8] Zhao Y., Wang L., “On the symmetric modal interaction of the suspended cable: three-to one internal resonance”, J. Sound Vibr., 4–5 (2006), 1073–1093 | DOI | MR

[9] Litvinov V.L., “Prodolnye kolebaniya kanata peremennoi dliny s gruzom na kontse”, Vestn. nauchno-tekhn. razvitiya, 2016, no. 1(101), 19–24 | MR

[10] Samarin Yu.P., “Ob odnoi nelineinoi zadache dlya volnovogo uravneniya v odnomernom prostranstve”, Prikl. matem. i mekhan., 26:3 (1964), 77–80

[11] Vesnitskii A.I., Volny v sistemakh s dvizhuschimisya granitsami i nagruzkami, Fizmatlit, M., 2001

[12] Litvinov V.L., Anisimov V.N., “Poperechnye kolebaniya kanata, dvizhuschegosya v prodolnom napravlenii”, Izv. Samar. nauch. tsentra RAN, 19:4 (2017), 161–165

[13] Erofeev V.I., Kolesov D.A., Lisenkova E.E., “Issledovanie volnovykh protsessov v odnomernoi sisteme, lezhaschei na uprugoinertsionnom osnovanii, s dvizhuscheisya nagruzkoi”, Vestn. nauchno-tekhn. razvitiya, 2013, no. 6(70), 18–29

[14] Litvinov V.L., “Poperechnye kolebaniya vyazkouprugogo kanata, lezhaschego na uprugom osnovanii, s uchetom vliyaniya sil soprotivleniya sredy”, Vestn. nauchno-tekhn. razvitiya, 2015, no. 4(92), 29–33

[15] Litvinov V.L., “Tochnoe i priblizhennoe resheniya zadachi o kolebaniyakh sterzhnya peremennoi dliny”, Vestn. nauchno-tekhn. razvitiya, 2017, no. 9(121), 46–57

[16] Anisimov V.N., Litvinov V.L., “Issledovanie rezonansnykh svoistv mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi metoda Kantorovicha–Galerkina”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiziko-matematicheskie nauki, 1:18 (2009), 149–158 | DOI | Zbl

[17] Lezhneva A.A., “Izgibnye kolebaniya balki peremennoi dliny”, Izv. AN SSSR. Mekhan. tverdogo tela, 1970, no. 1, 159–161

[18] Litvinov V.L., Anisimov V.N., “Primenenie metoda Kantorovicha–Galerkina dlya resheniya kraevykh zadach s usloviyami na dvizhuschikhsya granitsakh”, Izv. RAN. Mekhan. tverdogo tela, 2018, no. 2, 70–77

[19] Litvinov V.L., “Reshenie kraevykh zadach s podvizhnymi granitsami s ispolzovaniem priblizhennogo metoda postroeniya reshenii integro-differentsialnykh uravnenii”, Tr. In-ta matematiki i mekhaniki Ural. otd. RAN, 26, no. 2, 2020, 188–199

[20] Litvinov V.L., Litvinova K.V., “Priblizhennyi metod resheniya kraevykh zadach s podvizhnymi granitsami putem svedeniya k integro-differentsialnym uravneniyam”, Zhurn. vychisl. matem. i matem. fiz., 62:6 (2022), 977–986 | Zbl

[21] Litvinov V.L., “Variatsionnaya postanovka zadachi o kolebaniyakh balki s podvizhnoi podpruzhinennoi oporoi”, Teor. i matem. fiz., 215:2 (2023), 709–715 | MR | Zbl

[22] Vesnitskii A.I., “Obratnaya zadacha dlya odnomernogo rezonatora, izmenyayuschego vo vremeni svoi razmery”, Izv. vuzov. Radiofizika, 10 (1971), 1538–1542

[23] Barsukov K.A., Grigoryan G.A., “K teorii volnovoda s podvizhnymi granitsami”, Izv. vuzov. Radiofizika, 2 (1976), 280–285

[24] Anisimov V.N., Litvinov V.L., Korpen I.V., “Ob odnom metode polucheniya analiticheskogo resheniya volnovogo uravneniya, opisyvayuschego kolebaniya sistem s dvizhuschimisya granitsami”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiziko-matematicheskie nauki, 3(28) (2012), 145–151 | DOI | Zbl

[25] Litvinov V.L., “Reshenie kraevykh zadach s dvizhuschimisya granitsami pri pomoschi metoda zameny peremennykh v funktsionalnom uravnenii”, Zhurn. Srednevolzh. matem. o-va, 15:3 (2013), 112–119 | Zbl

[26] Anisimov V.N., Litvinov V.L., “Analiticheskii metod resheniya volnovogo uravneniya s shirokim klassom uslovii na dvizhuschikhsya granitsakh”, Vestn. nauchno-tekhn. razvitiya, 2016, no. 2(102), 28–35

[27] Koshlyakov N.S., Gliner E.B., Smirnov M.M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970

[28] Litvinov V.L., “Issledovanie svobodnykh kolebanii mekhanicheskikh ob'ektov s dvizhuschimisya granitsami pri pomoschi asimptoticheskogo metoda”, Zhurn. Srednevolzh. matem. o-va, 16:1 (2014), 83–88 | Zbl