Nonsummability of almost everywhere orthorecursive expansions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 36-39

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved earlier that only Weyl multiplier $\lambda_k$ with the property $\sum\limits_{k=1}^\infty \frac1{\lambda_k}\infty$ provides the almost every where convergence of an orthorecurcive expansions of a function which does not converge to it in the norm. This result is extended to summation methods that sum a sequence being constant staring with some its element to its limit.
@article{VMUMM_2024_3_a4,
     author = {A. A. Kiriukhina and T. P. Lukashenko},
     title = {Nonsummability of almost everywhere orthorecursive expansions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--39},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/}
}
TY  - JOUR
AU  - A. A. Kiriukhina
AU  - T. P. Lukashenko
TI  - Nonsummability of almost everywhere orthorecursive expansions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 36
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/
LA  - ru
ID  - VMUMM_2024_3_a4
ER  - 
%0 Journal Article
%A A. A. Kiriukhina
%A T. P. Lukashenko
%T Nonsummability of almost everywhere orthorecursive expansions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 36-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/
%G ru
%F VMUMM_2024_3_a4
A. A. Kiriukhina; T. P. Lukashenko. Nonsummability of almost everywhere orthorecursive expansions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 36-39. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/