Nonsummability of almost everywhere orthorecursive expansions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 36-39
Voir la notice de l'article provenant de la source Math-Net.Ru
It was proved earlier that only Weyl multiplier $\lambda_k$ with the property $\sum\limits_{k=1}^\infty \frac1{\lambda_k}\infty$ provides the almost every where convergence of an orthorecurcive expansions of a function which does not converge to it in the norm. This result is extended to summation methods that sum a sequence being constant staring with some its element to its limit.
@article{VMUMM_2024_3_a4,
author = {A. A. Kiriukhina and T. P. Lukashenko},
title = {Nonsummability of almost everywhere orthorecursive expansions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {36--39},
publisher = {mathdoc},
number = {3},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/}
}
TY - JOUR AU - A. A. Kiriukhina AU - T. P. Lukashenko TI - Nonsummability of almost everywhere orthorecursive expansions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 36 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/ LA - ru ID - VMUMM_2024_3_a4 ER -
A. A. Kiriukhina; T. P. Lukashenko. Nonsummability of almost everywhere orthorecursive expansions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 36-39. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a4/