Topology of isoenergetic surfaces of billiard books glued of rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 26-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary billiard book glued from domains homeomorphic to annuli, it is shown that the isoenergy surface of the billiard dynamical system on such a table is homeomorphic to the direct product of the circle $S^1$ and the sphere $S^2$ with $g$ handles. In the class of ordered billiard games introduced by V. Dragovic and M. Radnovic and modeled by them later by means of billiard books (algorithmically constructed from the billiard ordered game), a subclass of those games was found, the simulation of which is possible only by means of billiard book subclass studied in this paper.
@article{VMUMM_2024_3_a3,
     author = {D. A. Tuniyants},
     title = {Topology of isoenergetic surfaces of billiard books glued of rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {26--35},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/}
}
TY  - JOUR
AU  - D. A. Tuniyants
TI  - Topology of isoenergetic surfaces of billiard books glued of rings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 26
EP  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/
LA  - ru
ID  - VMUMM_2024_3_a3
ER  - 
%0 Journal Article
%A D. A. Tuniyants
%T Topology of isoenergetic surfaces of billiard books glued of rings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 26-35
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/
%G ru
%F VMUMM_2024_3_a3
D. A. Tuniyants. Topology of isoenergetic surfaces of billiard books glued of rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 26-35. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/

[1] Vedyushkina V.V., Kharcheva I.S., “Bilyardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[2] Fomenko A.T., Vedyushkina V.V., Zav'yalov V.N., “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55 | DOI | MR | Zbl

[3] Glutsyuk A.A., “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. Eur. Math. Soc., 23:3 (2021), 994–1049 | MR

[4] Dragovic V., Radnovic M., “Cayley-type conditions for billiards within $k$ quadrics in $R^d$”, J. Phys. A, 37:4 (2004), 1269–1276 | DOI | MR | Zbl

[5] Dragovic V., Radnovic M., Gasiorek S., “Billiard ordered games and books”, Regul. Chaotic. Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl

[6] Smeil S., “Topologiya i mekhanika”, Uspekhi matem. nauk, 27:2(164) (1972), 77–133 | MR

[7] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[8] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (265) (1989), 145–173 | MR

[9] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Matem., 54:3 (1990), 546–575 | Zbl

[10] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[11] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Matem., 50:6 (1986), 1276–1307 | MR | Zbl

[12] Dragovi$\acute{c}$ V., Radnovi$\acute{c}$ M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[13] Fokicheva V.V., “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[14] Fokicheva V.V., “Topologicheskaya klassifikatsiya bilyardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[15] Vedyushkina V.V., “Invarianty Fomenko–Tsishanga nevypuklykh topologicheskikh bilyardov”, Matem. sb., 210:3 (2019), 17–74 | DOI | MR | Zbl

[16] Fokicheva V.V., Fomenko A.T., “Integriruemye bilyardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Dokl. RAN, 465:2 (2015), 1–4 | DOI

[17] Vedyushkina V.V., “Liouville foliation of billiard book modeling Goryachev–Chaplygin case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | DOI | MR | Zbl

[18] Vedyushkina V.V., Kharcheva I.S., “Bilyardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb., 212:8 (2021), 89–150 | DOI | MR | Zbl

[19] Vedyushkina V.V., “Lokalnoe modelirovanie bilyardami sloenii Liuvillya: realizatsiya rebernykh invariantov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2021, no. 2, 28–32 | Zbl

[20] Vedyushkina V.V., Kibkalo V.A., “Realizatsiya bilyardami chislovogo invarianta rassloeniya Zeiferta integriruemykh sistem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 22–28 | Zbl

[21] Kibkalo V.A., Fomenko A.T., Kharcheva I.S., “Realizatsiya integriruemykh gamiltonovykh sistem bilyardnymi knizhkami”, Tr. Mosk. matem. o-va, 82, no. 1, 2021, 45–78 | MR | Zbl

[22] Vedyushkina V.V., Fomenko A.T., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 3, 15–25 | MR | Zbl

[23] Kharcheva I.S., “Izoenergeticheskie mnogoobraziya integriruemykh bilyardnykh knizhek”, Vestn. Mosk. un-ta. Matem. Mekhan., 2020, no. 4, 12–22 | MR | Zbl

[24] Vedyushkina V.V., “Integriruemye bilyardy realizuyut toricheskie sloeniya na linzovykh prostranstvakh i 3-tore”, Matem. sb., 211:2 (2020), 3–30 | DOI | MR

[25] Vedyushkina V.V., “Topologicheskii tip izoenergeticheskikh poverkhnostei bilyardnykh knizhek”, Matem. sb., 212:12 (2021), 3–19 | DOI | MR