Topology of isoenergetic surfaces of billiard books glued of rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 26-35

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary billiard book glued from domains homeomorphic to annuli, it is shown that the isoenergy surface of the billiard dynamical system on such a table is homeomorphic to the direct product of the circle $S^1$ and the sphere $S^2$ with $g$ handles. In the class of ordered billiard games introduced by V. Dragovic and M. Radnovic and modeled by them later by means of billiard books (algorithmically constructed from the billiard ordered game), a subclass of those games was found, the simulation of which is possible only by means of billiard book subclass studied in this paper.
@article{VMUMM_2024_3_a3,
     author = {D. A. Tuniyants},
     title = {Topology of isoenergetic surfaces of billiard books glued of rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {26--35},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/}
}
TY  - JOUR
AU  - D. A. Tuniyants
TI  - Topology of isoenergetic surfaces of billiard books glued of rings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 26
EP  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/
LA  - ru
ID  - VMUMM_2024_3_a3
ER  - 
%0 Journal Article
%A D. A. Tuniyants
%T Topology of isoenergetic surfaces of billiard books glued of rings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 26-35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/
%G ru
%F VMUMM_2024_3_a3
D. A. Tuniyants. Topology of isoenergetic surfaces of billiard books glued of rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 26-35. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a3/