Topological invariants of some ordered billiard games
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 19-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, Liouville equivalence invariants were calculated for billiard books that implement some ordered billiard games. Namely, for integrable billiard books glued from $m$ disks bounded by an ellipse and no more than two annuli bounded by two confocal ellipses.
@article{VMUMM_2024_3_a2,
     author = {K. E. Turina},
     title = {Topological invariants of some ordered billiard games},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--25},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/}
}
TY  - JOUR
AU  - K. E. Turina
TI  - Topological invariants of some ordered billiard games
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 19
EP  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/
LA  - ru
ID  - VMUMM_2024_3_a2
ER  - 
%0 Journal Article
%A K. E. Turina
%T Topological invariants of some ordered billiard games
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 19-25
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/
%G ru
%F VMUMM_2024_3_a2
K. E. Turina. Topological invariants of some ordered billiard games. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/

[1] Dragovic V., Radnovic M., Gasiorek S., “Billiard ordered games and books”, Reg. Chaot. Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl

[2] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl

[3] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | MR

[4] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[6] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl

[7] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[8] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl

[9] Vedyushkina V.V., “Liouville foliation of billiard book modeling Goryachev–Chaplygin case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | DOI | MR | Zbl

[10] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb., 212:8 (2021), 89–150 | DOI | MR | Zbl