@article{VMUMM_2024_3_a2,
author = {K. E. Turina},
title = {Topological invariants of some ordered billiard games},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--25},
year = {2024},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/}
}
K. E. Turina. Topological invariants of some ordered billiard games. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/
[1] Dragovic V., Radnovic M., Gasiorek S., “Billiard ordered games and books”, Reg. Chaot. Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl
[2] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb., 209:12 (2018), 17–56 | DOI | MR | Zbl
[3] Kozlov V.V., Treschev D.V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | MR
[4] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl
[6] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | Zbl
[7] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya. Topologiya. Klassifikatsiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[8] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb., 206:10 (2015), 127–176 | DOI | MR | Zbl
[9] Vedyushkina V.V., “Liouville foliation of billiard book modeling Goryachev–Chaplygin case”, Moscow Univ. Math. Bull., 75:1 (2020), 42–46 | DOI | MR | Zbl
[10] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb., 212:8 (2021), 89–150 | DOI | MR | Zbl