Topological invariants of some ordered billiard games
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 19-25

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, Liouville equivalence invariants were calculated for billiard books that implement some ordered billiard games. Namely, for integrable billiard books glued from $m$ disks bounded by an ellipse and no more than two annuli bounded by two confocal ellipses.
@article{VMUMM_2024_3_a2,
     author = {K. E. Turina},
     title = {Topological invariants of some ordered billiard games},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--25},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/}
}
TY  - JOUR
AU  - K. E. Turina
TI  - Topological invariants of some ordered billiard games
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 19
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/
LA  - ru
ID  - VMUMM_2024_3_a2
ER  - 
%0 Journal Article
%A K. E. Turina
%T Topological invariants of some ordered billiard games
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 19-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/
%G ru
%F VMUMM_2024_3_a2
K. E. Turina. Topological invariants of some ordered billiard games. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 19-25. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a2/