On the motion of a ball between rotating planes with viscous friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 70-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the motion of a ball between two uniformly rotating horizontal planes with linear viscous friction is considered. Steady motions of the ball are found and the parameters of the system under which these motions are stable or unstable are indicated. It is shown that the equations of motion of а low-inertia ball have the form of Tikhonov's equations with a small parameter as a coefficient at some derivatives. The dynamics of this ball on an arbitrary finite time interval in the limit as the central moment of inertia of the ball tends to zero is studied.
@article{VMUMM_2024_3_a10,
     author = {A. A. Koshelev and E. I. Kugushev and T. V. Shahova},
     title = {On the motion of a ball between rotating planes with viscous friction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {70--76},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a10/}
}
TY  - JOUR
AU  - A. A. Koshelev
AU  - E. I. Kugushev
AU  - T. V. Shahova
TI  - On the motion of a ball between rotating planes with viscous friction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 70
EP  - 76
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a10/
LA  - ru
ID  - VMUMM_2024_3_a10
ER  - 
%0 Journal Article
%A A. A. Koshelev
%A E. I. Kugushev
%A T. V. Shahova
%T On the motion of a ball between rotating planes with viscous friction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 70-76
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a10/
%G ru
%F VMUMM_2024_3_a10
A. A. Koshelev; E. I. Kugushev; T. V. Shahova. On the motion of a ball between rotating planes with viscous friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 70-76. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a10/

[1] Fufaev N.A., “Katanie shara po gorizontalnoi vraschayuscheisya ploskosti”, Prikl. matem. i mekhan., 47:1 (1983), 43–47 | MR

[2] Ivanova T.B., “The rolling of a homogeneous ball with slipping on a horizontal rotating plane”, Rus. J. Nonlin. Dyn., 15:2 (2019), 171–178 | MR | Zbl

[3] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[4] Karapetyan A.V., Ustoichivost i bifurkatsiya dvizhenii, Izd-vo Mosk. un-ta, M., 2020

[5] Koshelev A., Kugushev E., Shahova T., “Dynamics of a low-inertia ball located between two rotating planes with viscous friction”, Dynamical Systems — Theory and Applications, Abstracts of 16th Int. Conf. (6–9 December 2021, Łódź), eds. J. Awrejcewicz, M. Kaźmierczak, J. Mrozowski, P. Olejnik, Politechnika Łódzka, Łódź, 2021

[6] Vasileva A.B., Butuzov V.F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[7] Milne E.A., Vectorial Mechanics, Methuen Amp Co. Ltd., London, 1948 | MR

[8] Karapetyan A.V., Rumyantsev V.V., “Ustoichivost konservativnykh i dissipativnykh sistem”, Itogi nauki i tekhn. Obsch. mekhan., 6, VINITI, M, 1983

[9] Eldering J., “Realizing nonholonomic dynamics as limit of friction forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409 | DOI | MR | Zbl

[10] Routh E.J., The advanced part of a treatise on the dynamics of a system of rigid bodies: being part II of a treatise on the whole subject, MacMillan, N.Y., 1905 | MR

[11] Klimushev A.I., Krasovskii N.N., “Ravnomernaya asimptoticheskaya ustoichivost sistem differentsialnykh uravnenii s malym parametrom pri proizvodnoi”, Prikl. matem. i mekhan., 25:4 (1961), 680–690 | Zbl