Solvability of the Neumann problem for the $p$-Laplacian on manifolds with a model end
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion for the existence of solutions to the Neumann boundary value problem for the $p$-Laplacian on Riemannian manifolds with a model end is obtained.
@article{VMUMM_2024_3_a0,
     author = {V. V. Brovkin},
     title = {Solvability of the {Neumann} problem for the $p${-Laplacian} on manifolds with a model end},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a0/}
}
TY  - JOUR
AU  - V. V. Brovkin
TI  - Solvability of the Neumann problem for the $p$-Laplacian on manifolds with a model end
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 3
EP  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a0/
LA  - ru
ID  - VMUMM_2024_3_a0
ER  - 
%0 Journal Article
%A V. V. Brovkin
%T Solvability of the Neumann problem for the $p$-Laplacian on manifolds with a model end
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 3-10
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a0/
%G ru
%F VMUMM_2024_3_a0
V. V. Brovkin. Solvability of the Neumann problem for the $p$-Laplacian on manifolds with a model end. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2024), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2024_3_a0/

[1] Cheng S.Y., Yau S.T., “Differential equations on Riemannian manifolds and their geometric applications”, Communs Pure and Appl. Math., 28:3 (1975), 335–354 | DOI | MR

[2] Korolkov S.A., Losev A.G., “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1–2 (2012), 459–472 | DOI | MR | Zbl

[3] Losev A.G., Mazepa E.A., “On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds”, Probl. anal. Issues Anal., 8(26):3 (2019), 73–82 | DOI | MR | Zbl

[4] Pigola S., Rigoli M., Setti A.G., “Aspects of potential theory on manifolds, linear and non-linear”, Milan J. Math., 76 (2008), 229–256 | DOI | MR | Zbl

[5] Pigola S., Rigoli M., Setti A.G., “Some non-linear function theoretic properties of Riemannian manifolds”, Rev. Mat. Iberoamericana, 22:3 (2006), 801–831 | DOI | MR | Zbl

[6] Brovkin V.V., Konkov A.A., “O suschestvovanii reshenii vtoroi kraevoi zadachi dlya p-laplasiana na rimanovykh mnogoobraziyakh”, Matem. zametki, 109:2 (2021), 180–195 | DOI | MR | Zbl

[7] Gadylshin R.R., Chechkin G.A., “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl

[8] Grigoryan A.A., “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl

[9] Kondratev V.A., Oleinik O.A., “O parabolicheskikh po vremeni resheniyakh parabolicheskikh uravnenii vtorogo poryadka vo vneshnikh oblastyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 1985, no. 4, 38–47 | MR | Zbl

[10] Konkov A.A., “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyax”, Matem. sb., 184:12 (1993), 23–52 | Zbl

[11] Konkov A.A., “O prostranstve reshenii ellipticheskikh uravnenii na rimanovykh mnogoobraziyakh”, Differents. uravneniya, 31:5 (1995), 805–813 | MR | Zbl

[12] Kudryavtsev L.D., “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennykh oblastei”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1179–1199 | Zbl

[13] Mazya V.G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR