Measure of unloading disproportion in the theory of small elastoplastic deformations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 69-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

From the standpoint of the theory of small elastoplastic deformations, the stress-strain state of the continuous medium along various unloading trajectories from the state achieved as a result of a simple active process is analyzed. It is shown that if the unloading is disproportionate, then the constitutive relations connecting the deviators of stresses and strains are tensorially nonlinear, i.e., the unit tensors of these deviators do not coincide. It is shown that in the Ilyushin five-dimensional deviatoric space there exists only one full unloading point, and it belongs to the line segment of the preceding active loading. A measure of the non-proportionality of the unloading is introduced, characterizing the degree of deviation of the path of the passive deformation process from the previously mentioned line segment. This measure is calculated for two piece-linear unloadings using the example of a constant annular tube subject to the simultaneous action of $ (r\theta) $-torsion and axial $(rz)$-shear.
@article{VMUMM_2024_2_a8,
     author = {D. V. Georgievskii and N. A. Rautian},
     title = {Measure of unloading disproportion in the theory of small elastoplastic deformations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--73},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a8/}
}
TY  - JOUR
AU  - D. V. Georgievskii
AU  - N. A. Rautian
TI  - Measure of unloading disproportion in the theory of small elastoplastic deformations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 69
EP  - 73
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a8/
LA  - ru
ID  - VMUMM_2024_2_a8
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%A N. A. Rautian
%T Measure of unloading disproportion in the theory of small elastoplastic deformations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 69-73
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a8/
%G ru
%F VMUMM_2024_2_a8
D. V. Georgievskii; N. A. Rautian. Measure of unloading disproportion in the theory of small elastoplastic deformations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 69-73. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a8/

[1] Ilyushin A.A., Plastichnost. Uprugo-plasticheskie deformatsii, 3-e izd., URSS, M., 2018

[2] Ilyushin A.A., Plastichnost. Osnovy obschei matematicheskoi teorii, 3-e izd., URSS, M., 2020

[3] Lenskii V.S., Vvedenie v teoriyu plastichnosti, 1, 2, Izd-vo Mosk. un-ta, M., 1968–1969

[4] Zubchaninov V.G., “Zakon slozhnoi razgruzki materialov v teorii plastichnosti”, Problemy prochnosti i plastichnosti, 70 (2008), 7–17

[5] Annin B.D., Zhigalkin V.M., Povedenie materialov v usloviyakh slozhnogo nagruzheniya, Izd-vo SO RAN, Novosibirsk, 1999