A unilateral discrete contact problem for a functionally graded elastic strip
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem is considered for the indentation of a functionally graded strip by a rigid punch of finite dimension with a surface microrelief. Boundary variational formulations of the problem are given using the Poincaré–Steklov operator that maps contact stresses to displacements. To approximate this operator, the discrete Fourier transform is applied. A variational formulation of a boundary value problem for transforms of displacements is used to calculate a transfer function. Some regularities of contact interaction are established.
@article{VMUMM_2024_2_a7,
     author = {A. A. Bobylev},
     title = {A unilateral discrete contact problem for a functionally graded elastic strip},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--69},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/}
}
TY  - JOUR
AU  - A. A. Bobylev
TI  - A unilateral discrete contact problem for a functionally graded elastic strip
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 58
EP  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/
LA  - ru
ID  - VMUMM_2024_2_a7
ER  - 
%0 Journal Article
%A A. A. Bobylev
%T A unilateral discrete contact problem for a functionally graded elastic strip
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 58-69
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/
%G ru
%F VMUMM_2024_2_a7
A. A. Bobylev. A unilateral discrete contact problem for a functionally graded elastic strip. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/

[1] Saleh B., Jiang J., Fathi R., Al-hababi T., Xu Q., Wang L., Song Dan., Ma A., “30 Years of functionally graded materials: An overview of manufacturing methods. Applications and Future Challenges”, Composites. Part B: Engineering, 201 (2020), 108376 | DOI

[2] Aleksandrov V.M., Mkhitaryan S.M., Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1963

[3] Barber J.R., Contact Mechanics, Springer, Cham, 2018 | MR | Zbl

[4] Goryacheva I.G., Mekhanika friktsionnogo vzaimodeistviya, Nauka, M., 2001

[5] Argatov I.I., Dmitriev N.N., Osnovy teorii uprugogo diskretnogo kontakta, Politekhnika, SPb., 2003

[6] Torskaya E.V., Modeli friktsionnogo vzaimodeistviya tel s pokrytiyami, In-t kompyuternykh issledovanii, M.–Izhevsk, 2020

[7] Goryacheva I., Makhovskaya Yu., Discrete Contact Mechanics with Applications in Tribology, Elsevier, Amsterdam, 2022 | MR

[8] Goryacheva I.G., Tsukanov I.Yu., “Razvitie mekhaniki diskretnogo kontakta s prilozheniyami k issledovaniyu friktsionnogo vzaimodeistviya deformiruemykh tel”, Prikl. matem. i mekhan., 84:6 (2020), 757–789 | DOI | MR | Zbl

[9] Bobylev A.A., “Algoritm resheniya zadach diskretnogo kontakta dlya uprugoi polosy”, Prikl. matem. i mekhan., 86:3 (2022), 404–423 | Zbl

[10] Kravchuk A.S., Neittaanmäki P.J., Variational and Quasi-Variational Inequalities in Mechanics, Springer, Dordrecht, 2007 | MR | Zbl

[11] Wriggers P., Computational Contact Mechanics, Springer-Verlag, Berlin, 2006 | Zbl

[12] Yastrebov V.A., Numerical Methods in Contact Mechanics, ISTE/Wiley, N.Y., 2013 | Zbl

[13] Bobylev A.A., “Chislennoe postroenie transformanty yadra integralnogo predstavleniya operatora Puankare–Steklova dlya uprugoi polosy”, Differents. uravneniya, 59:1 (2023), 115–129 | DOI | MR | Zbl

[14] Bobylev A.A., Belashova I.S., “Chislennoe reshenie ploskikh kontaktnykh zadach dlya uprugikh tel s funktsionalno-gradientnymi pokrytiyami”, Nelineinyi mir, 11:10 (2013), 689–695

[15] Vorovich I.I., Aleksandrov V.M., Babeshko V.A., Neklassicheskie smeshannye zadachi teorii uprugosti, Nauka, M., 1974

[16] Aizikovich S.M., “Staticheskie kontaktnye zadachi dlya neodnorodnogo po glubine osnovaniya”, Mekhan. kontaktnykh vzaimodeistvii, FIZMATLIT, M., 2001, 199–213

[17] Aizikovich S.M., Aleksandrov V.M., Belokon A.V., Krenev L.I., Trubchik I.S., Kontaktnye zadachi teorii uprugosti dlya neodnorodnykh sred, FIZMATLIT, M., 2006

[18] Vatulyan A.O., Plotnikov D.K., “K issledovaniyu kontaktnoi zadachi dlya neodnorodnoi uprugoi polosy”, Prikl. matem. i mekhan., 85:3 (2021), 283–293

[19] Nikishin V.S., “Staticheskie kontaktnye zadachi dlya mnogosloinykh uprugikh tel”, Mekhan. kontaktnykh vzaimodeistvii, FIZMATLIT, M., 2001, 214–233

[20] Babeshko V.A., Glushkov E.V., Glushkova N.V., “Metody postroeniya matrits Grina dlya stratifitsirovannogo uprugogo poluprostranstva”, Zhurn. vychisl. matem. i matem. fiz., 1987, no. 1, 93–101 | Zbl

[21] Bobylev A.A., “O vychislenii peredatochnoi funktsii operatora Puankare–Steklova dlya funktsionalno-gradientnoi uprugoi polosy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2023, no. 5, 52–60 | DOI

[22] Khludnev A.M., Zadachi teorii uprugosti v negladkikh oblastyakh, FIZMATLIT, M., 2010

[23] Wang Q.J., Zhu D., Interfacial Mechanics: Theories and Methods for Contact and Lubrication, CRC Press, Boca Raton, 2019

[24] Wang Q.J., Sun L., Zhang X., Liu S., Zhu D., “FFT-based methods for computational contact mechanics”, Front. Mech. Eng, 6:61 (2020), 92–113

[25] Bobylev A.A., “Primenenie metoda sopryazhennykh gradientov k resheniyu zadach diskretnogo kontakta dlya uprugoi poluploskosti”, Izv. RAN. Mekhan. tverdogo tela, 2022, no. 2, 154–172

[26] Polonsky I.A., Keer L.M., “A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques”, Wear, 231:2 (1999), 206–219 | DOI