A unilateral discrete contact problem for a functionally graded elastic strip
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem is considered for the indentation of a functionally graded strip by a rigid punch of finite dimension with a surface microrelief. Boundary variational formulations of the problem are given using the Poincaré–Steklov operator that maps contact stresses to displacements. To approximate this operator, the discrete Fourier transform is applied. A variational formulation of a boundary value problem for transforms of displacements is used to calculate a transfer function. Some regularities of contact interaction are established.
@article{VMUMM_2024_2_a7,
author = {A. A. Bobylev},
title = {A unilateral discrete contact problem for a functionally graded elastic strip},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {58--69},
publisher = {mathdoc},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/}
}
TY - JOUR AU - A. A. Bobylev TI - A unilateral discrete contact problem for a functionally graded elastic strip JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 58 EP - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/ LA - ru ID - VMUMM_2024_2_a7 ER -
A. A. Bobylev. A unilateral discrete contact problem for a functionally graded elastic strip. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/