A unilateral discrete contact problem for a functionally graded elastic strip
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem is considered for the indentation of a functionally graded strip by a rigid punch of finite dimension with a surface microrelief. Boundary variational formulations of the problem are given using the Poincaré–Steklov operator that maps contact stresses to displacements. To approximate this operator, the discrete Fourier transform is applied. A variational formulation of a boundary value problem for transforms of displacements is used to calculate a transfer function. Some regularities of contact interaction are established.
@article{VMUMM_2024_2_a7,
     author = {A. A. Bobylev},
     title = {A unilateral discrete contact problem for a functionally graded elastic strip},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--69},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/}
}
TY  - JOUR
AU  - A. A. Bobylev
TI  - A unilateral discrete contact problem for a functionally graded elastic strip
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 58
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/
LA  - ru
ID  - VMUMM_2024_2_a7
ER  - 
%0 Journal Article
%A A. A. Bobylev
%T A unilateral discrete contact problem for a functionally graded elastic strip
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 58-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/
%G ru
%F VMUMM_2024_2_a7
A. A. Bobylev. A unilateral discrete contact problem for a functionally graded elastic strip. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 58-69. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a7/