Moment-membrane theory of large deflection of elastic shells as a continuum model of deformed behavior of two-dimensional nanomaterials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, based on the assumption on the smallness of deformations, flexural-torsional characteristics and angles of rotation of the shell elements as well as on the assumption on shell's shallowness, with the help of the three-dimensional geometrically nonlinear moment theory of elasticity and by preserving only those nonlinear terms that come from normal displacement (deflection) and its derivatives, a geometrically nonlinear moment-membrane theory of elastic shells is constructed, which is interpreted as a continuum theory of the deformation behavior of flexible two-dimensional nanomaterials (in particular, for carbon nanotubes and graphene).
@article{VMUMM_2024_2_a6,
     author = {S. O. Sarkissian},
     title = {Moment-membrane theory of large deflection of elastic shells as a continuum model of deformed behavior of two-dimensional nanomaterials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--58},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a6/}
}
TY  - JOUR
AU  - S. O. Sarkissian
TI  - Moment-membrane theory of large deflection of elastic shells as a continuum model of deformed behavior of two-dimensional nanomaterials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 48
EP  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a6/
LA  - ru
ID  - VMUMM_2024_2_a6
ER  - 
%0 Journal Article
%A S. O. Sarkissian
%T Moment-membrane theory of large deflection of elastic shells as a continuum model of deformed behavior of two-dimensional nanomaterials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 48-58
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a6/
%G ru
%F VMUMM_2024_2_a6
S. O. Sarkissian. Moment-membrane theory of large deflection of elastic shells as a continuum model of deformed behavior of two-dimensional nanomaterials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 48-58. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a6/

[1] Baimova Yu.A., Mulyukov R.R., Grafen, nanotrubki i drugie uglerodnye nanostruktury, Izd-vo RAN, M., 2018

[2] Kang J.W., Kim H.W., Kim K.S. et al., “Molecular dynamics modelling and simulation of a graphene-based nanoelectro-mechanical resonator”, Curr. Appl. Phys., 13:4 (2013), 789–794 | DOI

[3] Wang J., Li T.T., “Molecular dynamics simulation of the resonant frequency of graphene nanoribbons”, Ferroelectrics, 549:1 (2019), 87–95 | DOI

[4] Korobeynikov S.N., Alyokhin V.V., Babichev A.V., “Simulation of mechanical parameters of graphene using the DREIDING force field”, Acta Mech., 229:6 (2018), 2343–2378 | DOI | MR

[5] Korobeynikov S.N., Alyokhin V.V., Babichev A.V., “On the molecular mechanics of single layer graphene sheets”, Int. J. Eng. Sci., 133 (2018), 109–131 | DOI | MR | Zbl

[6] Korobeynikov S.N., Alyokhin V.V., Babichev A.V., “Advanced nonlinear buckling analysis of a compressed single layer graphene sheet using the molecular mechanics method”, Int. J. Mech. Sci., 209 (2021), 106703 | DOI | MR

[7] Korobeynikov S.N., “Discussion on “Nonlinear buckling analysis of double-layered graphene nanoribbons based on molecular mechanics” by M. Namnabat, A. Barzegar, E. Barchiesi et al”, Carbon Letters, 31:6 (2021), 1365–1366 | DOI

[8] Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E., Equivalent Continuum Modeling of Nano-structured Materials, Technical Memorandum NASA/TM-2001-210863-2001, NASA Langley Research Center

[9] Li C.A., Chou T.W., “A structural mechanics approach for the analysis of carbon nanotubes”, Int. J. Solids and Struct., 40 (2003), 2487–2499 | DOI | Zbl

[10] Goldshtein R.V., Chentsov A.V., “Diskretno-kontinualnaya model nanotrubki”, Izv. RAN. Mekhan. tverdogo tela, 2005, no. 4, 57–74

[11] Wan H., Delale F., “A structural mechanics approach for predicting the mechanical properties of carbon nanotubes”, Mechanica, 45 (2010), 43–51 | DOI | Zbl

[12] Ivanova E.A., Morozov N.F., Semenov B.N., Firsova A.D., “Ob opredelenii uprugikh modulei nanostruktur, teoreticheskii raschet i metodika eksperimentov”, Izv. RAN. Mekhan. tverdogo tela, 2005, no. 4, 75–84

[13] Ivanova E.A., Krivtsov A.M., Morozov N.F., “Poluchenie makroskopicheskikh sootnoshenii uprugosti slozhnykh kristallicheskikh reshetok pri uchete momentnykh vzaimodeistvii na mikrourovne”, Prikl. matem. i mekhan., 71:4 (2007), 595–615 | MR | Zbl

[14] Berinskii I.E., Ivanova E.A., Krivtsov A.M., Morozov N.F., “Primenenie momentnogo vzaimodeistviya k postroeniyu ustoichivoi modeli kristallicheskoi reshetki grafita”, Izv. RAN. Mekhan. tverdogo tela, 2007, no. 5, 6–16

[15] Berinskii I.E., Krivtsov A.M., Kudarova A.M. i dr., Sovremennye problemy mekhaniki. Mekhanicheskie svoistva kovalentnykh kristallov, ucheb. posobie, eds. A.M. Krivtsov, O.S. Loboda, Izd-vo Politekhn. un-ta, SPb., 2014

[16] Sarkisyan S.O., “Sterzhnevaya i kontinualno-momentnaya modeli deformatsii dvumernykh nanomaterialov”, Fiz. mezomekhan., 25:2 (2022), 109–121 | DOI

[17] Ilyushin A.A., “Zagadki mekhaniki deformiruemykh tel”, Nereshennye zadachi mekhaniki i prikladnoi mekhaniki, Izd-vo MGU, M., 1977, 68–73

[18] Brovko G.L., Ilyushin A.A., “Ob odnoi ploskoi modeli perforirovannykh plit”, Vestn. Mosk. un-ta. Matem. Mekhan., 1993, no. 2, 83–91 | Zbl

[19] Brovko G.L., “Modelirovanie neodnorodnykh sred slozhnoi struktury i kontinuum Kossera”, Vestn. Mosk. un-ta. Matem. Mekhan., 1996, no. 5, 55–63 | MR

[20] Brovko G.L., Ivanova O.A., “Modelirovanie svoistv i dvizhenii neodnorodnogo odnomernogo kontinuuma slozhnoi mikrostruktury tipa Kossera”, Izv. RAN. Mekhan. tverdogo tela, 2008, no. 1, 22–36

[21] Sarkisyan S.O., “Model tonkikh obolochek v momentnoi teorii uprugosti s deformatsionnoi kontseptsiei “sdvig plyus povorot””, Fiz. mezomekhan., 23:4 (2020), 13–19 | MR

[22] Sarkisyan S.O., “Variatsionnye printsipy momentno-membrannoi teorii obolochek”, Vestn. Mosk. un-ta. Matem. Mekhan., 2022, no. 1, 38–47 | Zbl

[23] Sarkisyan S.O., “Momentno-membrannaya teoriya uprugikh tsilindricheskikh obolochek kak kontinualnaya model deformatsii odnosloinoi uglerodnoi nanotrubki”, XIII Vsesoyuz. s'ezd po teoreticheskoi i prikladnoi mekhanike (21–25 avgusta 2023 g.), Izd-vo SPbGPU, SPb., 2023

[24] Sarkisyan S.O., “Momentno-membrannaya teoriya uprugikh gibkikh plastin kak kontinualnaya geometricheski nelineinaya teoriya lista grafena”, Dokl. RAN. Fizika. Tekhnicheskie nauki, 509:1 (2023), 39–45 | DOI

[25] Zhilin P.A., Teoreticheskaya mekhanika. Fundamentalnye zakony mekhaniki, Izd-vo SPbGPU, SPb., 2003

[26] Novozhilov V.V., Sovremennye problemy mekhaniki. Osnovy nelineinoi teorii uprugosti, GITTL, L.–M., 1948 | MR

[27] Nowacki W., Olszak W., Micropolar Elasticity, Springer-Verlag, Wien, 1974

[28] Vlasov V.Z., Obschaya teoriya obolochek i ee prilozheniya v tekhnike, GITTL, M.–L., 1949 | MR

[29] Eremeev V.A., Zubov L.M., Mekhanika uprugikh obolochek, Nauka, M., 2008

[30] Altenbach J., Altenbach H., Eremeyev V.A., “On generalized Cosserat-type theories of plates and shells: a short review and bibliography”, Arch. Appl. Mech., 80:1 (2010), 73–92 | DOI | MR | Zbl

[31] Volmir A.S., Gibkie plastinki i obolochki, GITTL, M., 1956