Unsteady wave processes in a cylinder made of a functionally graded viscoelastic material
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 37-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of propagation of unsteady waves in the cross section of an infinite hollow cylinder made of a viscoelastic functionally graded material with non-monotonically varying properties along the radius is considered. The cylinder is replaced by a piecewise homogeneous one with a large number of coaxial homogeneous layers approximating the properties of the source material. Based on the previously constructed solution for a layered cylinder, wave processes in a cylinder made of a viscoelastic functionally graded material with different types of non-monotonic inhomogeneities are studied.
@article{VMUMM_2024_2_a4,
     author = {S. G. Pshenichnov},
     title = {Unsteady wave processes in a cylinder made of a functionally graded viscoelastic material},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--44},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a4/}
}
TY  - JOUR
AU  - S. G. Pshenichnov
TI  - Unsteady wave processes in a cylinder made of a functionally graded viscoelastic material
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 37
EP  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a4/
LA  - ru
ID  - VMUMM_2024_2_a4
ER  - 
%0 Journal Article
%A S. G. Pshenichnov
%T Unsteady wave processes in a cylinder made of a functionally graded viscoelastic material
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 37-44
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a4/
%G ru
%F VMUMM_2024_2_a4
S. G. Pshenichnov. Unsteady wave processes in a cylinder made of a functionally graded viscoelastic material. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 37-44. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a4/

[1] Senitskii Yu.E., “Raschet neodnorodnykh anizotropnykh tsilindra i sfery pri deistvii proizvolnoi radialno-simmetrichnoi dinamicheskoi nagruzki”, Prikl. mekhan., 14:5 (1978), 9–15

[2] Saakyan S.G., “O volnakh v neodnorodnykh uprugikh sredakh”, Dokl. AN SSSR, 82:3 (1986), 565–567 | MR

[3] Bulychev G.G., Pshenichnov S.G., “Osesimmetrichnaya zadacha dinamiki dlinnogo uprugogo neodnorodnogo tsilindra”, Stroit. mekhan. i raschet sooruzhenii, 1989, no. 4, 35–37

[4] Gubernatis J.E., Maradudin A.A., “A Laguerre series approach to the calculation of wave properties for surfaces of inhomogeneous elastic materials”, Wave Motion, 9:2 (1987), 111–121 | DOI | MR

[5] Ohyoshi T., “New stacking layer elements for analysis of reflection for transmission of elastic waves to inhomogeneous layers”, Mech. Res. Communs, 20:4 (1993), 353–359 | DOI | Zbl

[6] Zhavoronok S.I., “Zadachi o dispersii voln v neodnorodnykh volnovodakh: Metody resheniya (obzor). Ch. 1”, Mekhan. kompoz. mat-lov i konstruktsii, 27:2 (2021), 227–260 | DOI

[7] Zhavoronok S.I., “Zadachi o dispersii voln v neodnorodnykh volnovodakh: Metody resheniya (obzor). Ch. 2”, Mekhan. kompoz. mat-lov i konstruktsii, 28:1 (2022), 36–86 | DOI

[8] Boggarapu V., Gujjala R., Ojha S., Acharya Sk., Venkateswara babu P., Chowdary S., Gara D., “State of the art in functionally graded materials”, Compos. Struct, 262 (2021), 113596 | DOI

[9] Punera D., Kant T., “A critical review of stress and vibration analysis of functionally graded shell structures”, Compos. Struct., 210 (2019), 787–809 | DOI

[10] Kuznetsov S.V., “Lamb waves in anisotropic functionally graded plates: a closed form dispersion solution”, J. Mech., 36:1 (2020), 1–6 | DOI | MR

[11] Kielczynski P., Szalewski M., Balcerzak A., Wieja K., “Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials”, Ultrasonics, 65 (2016), 220–227 | DOI

[12] Ezzin H., Wang B., Qian Z., “Propagation behavior of ultrasonic Love waves in functionally graded piezoelectric-piezomagnetic materials with exponential variation”, Mech. Mater., 148 (2020), 103492 | DOI

[13] Larin N.V., Tolokonnikov L.A., “Rasseyanie zvuka termouprugim sharom s nepreryvno-neodnorodnym pokrytiem v teploprovodnoi zhidkosti”, Matem. modelir., 2019, no. 5, 20–38 | DOI | Zbl

[14] Tolokonnikov L.A., Larin N.V., “Rasseyanie tsilindrom s neodnorodnym pokrytiem zvukovykh voln, izluchaemykh lineinym istochnikom, v ploskom volnovode”, Matem. modelir., 33:8 (2021), 97–113 | DOI | Zbl

[15] Medvedskii A.L., “Zadacha o difraktsii nestatsionarnykh uprugikh voln na neodnorodnoi transversalno izotropnoi sfere”, Mekhan. kompoz. mat-lov i konstruktsii, 14:3 (2008), 473–489

[16] Yu J.G., “Viscoelastic shear horizontal wave in graded and layered plates”, Int. J. Solids and Struct., 48:16–17 (2011), 2361–2372

[17] Cao X., Jiang H., Ru Y., Shi J., “Asymptotic solution and numerical simulation of Lamb waves in functionally graded viscoelastic film”, Materials, 12:2 (2019), 268–284 | DOI

[18] Zhang X., Li Z., Wang X., Yu J.G, “The fractional Kelvin–Voigt model for circumferential guided waves in a viscoelastic FGM hollow cylinder”, Appl. Math. Model, 89:1 (2021), 299–313 | DOI | MR | Zbl

[19] Almbaidin A., Abu-Alshaikh I., “Vibration of functionally graded beam subjected to moving oscillator using Caputo–Fabrizio fractional derivative model”, Rom. J. Acoust. and Vibr, 16:2 (2019), 137–146

[20] Vatulyan A.O., Varchenko A.A., “Issledovanie kolebanii balki iz funktsionalno-gradientnogo materiala s uchetom zatukhaniya”, Izv. vuzov, 2021, no. 4, 10–18

[21] Vatulyan A.O., Yurov V.O., “Volny v vyazkouprugom tsilindricheskom volnovode s defektom”, Izv. Saratov. un-ta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 21:3 (2021), 352–367 | MR | Zbl

[22] Korovaitseva E.A., Pshenichnov S.G., “Ob issledovanii perekhodnykh volnovykh protsessov v lineino-vyazkouprugikh telakh s uchetom nepreryvnoi neodnorodnosti materiala”, Probl. prochn. i plast., 78:3 (2016), 262–270

[23] Korovaytseva E.A., Pshenichnov S.G., “Study of transient wave processes in continuously inhomogeneous elastic and viscoelastic bodies”, Modeling of the soil structure interaction, Selected topics, Nova Sci. Publ., N.Y., 2020, 1–28

[24] Pshenichnov S., Ivanov R., Datcheva M., “Transient wave propagation in functionally graded viscoelastic structures”, Math. MDPI, 10:23 (2022), 4505

[25] Pshenichnov S.G., Ryazantseva M.Yu, Ivanov R., Datcheva M.D., “Dynamic problem for a viscoelastic hollow cylinder with coaxial elastic inclusion”, C. Acad. Bulgare des Sciences, 75:8 (2022), 1184–1194 | DOI | MR

[26] Pshenichnov S.G., “Analiticheskoe reshenie odnomernykh zadach dinamiki kusochno-odnorodnykh vyazkouprugikh tel”, Izv. AN SSSR. Mekhan. tverdogo tela, 1991, no. 1, 95–103

[27] Pshenichnov S.G., “Dinamicheskie zadachi lineinoi vyazkouprugosti dlya kusochno-odnorodnykh tel”, Izv. RAN. Mekhan. tverdogo tela, 2016, no. 1, 79–89