On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

For each $n \ge 3$, three nonequivalent polynomials $f \in \mathbb{Q}[x]$ of degree $n$ were previously constructed for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$. In this paper, for each $n \ge 5$, two new polynomials $f \in K[x]$ of degree $n$ are found, defined over the field $K$, $[K : \mathbb{Q}] = [(n-1)/2]$, for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $K((x))$.
@article{VMUMM_2024_2_a2,
     author = {G.V. Fedorov},
     title = {On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/}
}
TY  - JOUR
AU  - G.V. Fedorov
TI  - On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 25
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/
LA  - ru
ID  - VMUMM_2024_2_a2
ER  - 
%0 Journal Article
%A G.V. Fedorov
%T On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 25-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/
%G ru
%F VMUMM_2024_2_a2
G.V. Fedorov. On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/