On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For each $n \ge 3$, three nonequivalent polynomials $f \in \mathbb{Q}[x]$ of degree $n$ were previously constructed for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$. In this paper, for each $n \ge 5$, two new polynomials $f \in K[x]$ of degree $n$ are found, defined over the field $K$, $[K : \mathbb{Q}] = [(n-1)/2]$, for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $K((x))$.
@article{VMUMM_2024_2_a2,
     author = {G.V. Fedorov},
     title = {On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--30},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/}
}
TY  - JOUR
AU  - G.V. Fedorov
TI  - On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 25
EP  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/
LA  - ru
ID  - VMUMM_2024_2_a2
ER  - 
%0 Journal Article
%A G.V. Fedorov
%T On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 25-30
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/
%G ru
%F VMUMM_2024_2_a2
G.V. Fedorov. On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/

[1] Platonov V.P., “Teoretiko-chislovye svoistva giperellipticheskikh polei i problema krucheniya v yakobianakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel”, Uspekhi matem. nauk, 69:1(415) (2014), 3–38 | DOI | MR | Zbl

[2] Adams W.W., Razar M.J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 3:3 (1980), 481–498 | DOI | MR | Zbl

[3] Schmidt W., “On continued fractions and diophantine approximation in power series fields”, Acta arithm., 95:2 (2000), 139–166 | DOI | MR | Zbl

[4] Berry T.G., “A type of hyperelliptic continued fraction”, Monatshefte für Mathematik, 145 (2005), 269–283 | DOI | MR | Zbl

[5] Zannier U., “Unlikely intersections and Pell's equations in polynomials”, Springer INdAM Series, 8 (2014), 151–169 | DOI | MR | Zbl

[6] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii mnogochlenov $f$ s periodicheskim razlozheniem $\sqrt{f}$ v nepreryvnuyu drob v giperellipticheskikh polyakh”, Izv. RAN. Ser. matem., 85:5 (2021), 152–189 | DOI | MR | Zbl

[7] Platonov V.P., Zhgun V.S., Petrunin M.M., “O probleme periodichnosti razlozhenii v nepreryvnuyu drob $\sqrt{f}$ dlya kubicheskikh mnogochlenov $f$ nad polyami algebraicheskikh chisel”, Matem. sb., 213:3 (2022), 139–170 | DOI | MR | Zbl

[8] Platonov V.P., Fedorov G.V., “O probleme klassifikatsii periodicheskikh nepreryvnykh drobei v giperellipticheskikh polyakh”, Uspekhi matem. nauk, 75:4(454) (2020), 211–212 | DOI | MR | Zbl

[9] Platonov V.P., Fedorov G.V., “O probleme periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Matem. sb., 209:4 (2018), 54–94 | DOI | MR | Zbl

[10] Platonov V.P., Petrunin M.M., “Gruppy S-edinits i problema periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Topologiya i fizika, Sb. statei. K 80-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Tr. MIAN, 302, 2018, 354–376 | DOI | Zbl

[11] Platonov V.P., Fedorov G.V., “O periodichnosti nepreryvnykh drobei v giperellipticheskikh polyakh”, Dokl. RAN, 474:5 (2017), 540–544 | Zbl