On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30
Voir la notice de l'article provenant de la source Math-Net.Ru
For each $n \ge 3$, three nonequivalent polynomials $f \in \mathbb{Q}[x]$ of degree $n$ were previously constructed for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$. In this paper, for each $n \ge 5$, two new polynomials $f \in K[x]$ of degree $n$ are found, defined over the field $K$, $[K : \mathbb{Q}] = [(n-1)/2]$, for which $\sqrt{f}$ has a periodic continued fraction expansion in the field $K((x))$.
@article{VMUMM_2024_2_a2,
author = {G.V. Fedorov},
title = {On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--30},
publisher = {mathdoc},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/}
}
TY - JOUR
AU - G.V. Fedorov
TI - On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2024
SP - 25
EP - 30
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/
LA - ru
ID - VMUMM_2024_2_a2
ER -
G.V. Fedorov. On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 25-30. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a2/