Invariants of systems having a small number of degrees of freedom with dissipation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Tensor invariants (differential forms) for homogeneous dynamical systems on tangent bundles to smooth two-dimensional manifolds are presented in the paper. The connection between the presence of these invariants and the full set of first integrals necessary for integration of geodesic, potential, and dissipative systems is shown. At the same time, the introduced force fields make the considered systems dissipative with dissipation of different signs and generalize the previously considered ones. We represent the typical examples from rigid body dynamics.
@article{VMUMM_2024_2_a0,
     author = {M. V. Shamolin},
     title = {Invariants of systems having a small number of degrees of freedom with dissipation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--15},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a0/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Invariants of systems having a small number of degrees of freedom with dissipation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 3
EP  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a0/
LA  - ru
ID  - VMUMM_2024_2_a0
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Invariants of systems having a small number of degrees of freedom with dissipation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 3-15
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a0/
%G ru
%F VMUMM_2024_2_a0
M. V. Shamolin. Invariants of systems having a small number of degrees of freedom with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2024), pp. 3-15. http://geodesic.mathdoc.fr/item/VMUMM_2024_2_a0/

[1] Poincaré H., Calcul des probabilités, Gauthier–Villars, Paris, 1912 | MR

[2] Kolmogorov A.N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, Dokl. AN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[3] Kozlov V.V., “Tenzornye invarianty i integrirovanie differentsialnykh uravnenii”, Uspekhi matem. nauk, 74:1(445) (2019), 117–148 | DOI | MR | Zbl

[4] Shamolin M.V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Uspekhi matem. nauk, 53:3 (1998), 209–210 | DOI | MR | Zbl

[5] Shamolin M.V., “Novye sluchai integriruemykh sistem nechetnogo poryadka s dissipatsiei”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 491:1 (2020), 95–101 | DOI | Zbl

[6] Shamolin M.V., “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 494:1 (2020), 105–111 | DOI | Zbl

[7] Stepanov V.V., Kurs differentsialnykh uravnenii, Gos. izd-vo fiz.-mat. lit-ry, M., 1959

[8] Samsonov V.A, Shamolin M.V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Matem. Mekhan., 1989, no. 3, 51–54

[9] Shamolin M.V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fund. i prikl. matem., 14:3 (2008), 3–237 | MR

[10] Kozlov V.V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. matem. i mekhan, 79:3 (2015), 307–316 | Zbl

[11] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR

[12] Trofimov V.V., “Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv”, Vestn. Mosk. un-ta. Matem. Mekhan, 1984, no. 6, 31–33 | Zbl

[13] Klein F., Neevklidova geometriya, Per. s nem., 4-e izd., ispr., obnovl., URSS, M., 2017

[14] Veil G., Simmetriya, URSS, M., 2007

[15] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976

[16] Trofimov V.V., Shamolin M.V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fund. i prikl. matem., 16:4 (2010), 3–229

[17] Trofimov V.V., Fomenko A.T., “Metodika postroeniya gamiltonovykh potokov na simmetricheskikh prostranstvakh i integriruemost nekotorykh gidrodinamicheskikh sistem”, Dokl. AN SSSR, 254:6 (1980), 1349–1353 | MR