Aggregation of states of a branching random walk over multidimensional lattice
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 54-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A time-continuous random walk on a multidimensional lattice which underlies the branching random walk with an infinite number of phase states is considered. The random walk with a countable number of states can be reduced to a system with a finite number of states by aggregating them. The asymptotic behavior of the residence time of the transformed system in each of the states depending on the lattice dimension under the assumption of a finite variance and under the condition leading to an infinite variance of jumps of the original system is studied. It is shown that the aggregation of states in the terms of the described process leads to the loss of the Markov property.
@article{VMUMM_2024_1_a6,
     author = {G. A. Popov and E. B. Yarovaya},
     title = {Aggregation of states of a branching random walk over multidimensional lattice},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {54--64},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a6/}
}
TY  - JOUR
AU  - G. A. Popov
AU  - E. B. Yarovaya
TI  - Aggregation of states of a branching random walk over multidimensional lattice
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 54
EP  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a6/
LA  - ru
ID  - VMUMM_2024_1_a6
ER  - 
%0 Journal Article
%A G. A. Popov
%A E. B. Yarovaya
%T Aggregation of states of a branching random walk over multidimensional lattice
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 54-64
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a6/
%G ru
%F VMUMM_2024_1_a6
G. A. Popov; E. B. Yarovaya. Aggregation of states of a branching random walk over multidimensional lattice. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 54-64. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a6/

[1] Korolyuk V.S., Turbin A.F., Matematicheskie osnovy fazovogo ukrupneniya slozhnykh sistem, Naukova dumka, Kiev, 1978 | MR

[2] Korolyuk V.S., Turbin A.F., Polumarkovskie protsessy i ikh prilozheniya, Naukova dumka, Kiev, 1976 | MR

[3] Zelentsov B.P., “Ukrupnenie sostoyanii slozhnykh sistem, modeliruemykh markovskimi protsessami”, Vestn. SibGUTI, 39:3 (2017), 43–56

[4] Kolmogorov A.N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi matem. nauk, 1938, no. 5, 5–41

[5] Kemeni Dzh., Snell Dzh., Konechnye tsepi Markova, Nauka, M., 1970

[6] Zelentsov B.P., “Matrichnye modeli funktsionirovaniya oborudovaniya sistem svyazi”, Vestn. SibGUTI, 32:4 (2015), 62–73

[7] Yarovaya E., “Branching random walks with heavy tails”, Communs Statist. Theory and Methods, 42:6 (2013), 3001–3010 | DOI | MR | Zbl

[8] Yarovaya E.B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-mat. f-te MGU, M., 2007

[9] Bulinskaya E.Vl., “Vremena dostizheniya s zapretom dlya sluchainogo bluzhdaniya”, Matem. tr., 15:1 (2012), 1–24

[10] Gikhman I.I., Skorokhod A.V., Teoriya sluchainykh protsessov, v. II, Nauka, M., 1973

[11] Aparin A.A., Popov G.A., Yarovaya E.B., “O raspredelenii vremeni prebyvaniya sluchainogo bluzhdaniya v tochke mnogomernoi reshetki”, Teor. veroyatn. i ee primen., 66:4 (2021), 657–675 | DOI | MR

[12] Rytova A.I., Yarovaya E.B., “Mnogomernaya lemma Vatsona i ee primenenie”, Matem. zametki, 99:3 (2016), 395–403 | DOI | MR | Zbl

[13] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. I, II, Mir, M., 1984 | MR

[14] Rytova A., Yarovaya E., “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. Roy. Soc. Edinburgh. Sec. A: Mathematics, 151:3 (2020), 971–992 | DOI | MR