Examples of autonomous differential systems with contrast combination of measures of Lyapunov, Perron, and upper-limit stability
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 50-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New characteristics of differential systems are studied, which meaningfully develop the concepts of Lyapunov, Perron and upper limit stability or instability of the zero solution of a differential system from the standpoint of probability theory. Examples of autonomous systems are proposed for which these characteristics take opposite values in a certain sense.
@article{VMUMM_2024_1_a5,
     author = {I. N. Sergeev},
     title = {Examples of autonomous differential systems with contrast combination of measures of {Lyapunov,} {Perron,} and upper-limit stability},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--54},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a5/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Examples of autonomous differential systems with contrast combination of measures of Lyapunov, Perron, and upper-limit stability
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 50
EP  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a5/
LA  - ru
ID  - VMUMM_2024_1_a5
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Examples of autonomous differential systems with contrast combination of measures of Lyapunov, Perron, and upper-limit stability
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 50-54
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a5/
%G ru
%F VMUMM_2024_1_a5
I. N. Sergeev. Examples of autonomous differential systems with contrast combination of measures of Lyapunov, Perron, and upper-limit stability. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 50-54. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a5/

[1] Kolmogorov A.N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M.–L., 1936

[2] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1965

[3] Khasminskii R.Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[4] Venttsel A.D., Freidlin M.I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979

[5] Sergeev I.N., “Opredelenie i svoistva mer ustoichivosti i neustoichivosti nulevogo resheniya differentsialnoi sistemy”, Matem. zametki, 113:6 (2023), 895–904 | DOI | Zbl

[6] Sergeev I.N., “Opredelenie mer ustoichivosti i neustoichivosti nulevogo resheniya differentsialnoi sistemy”, Differents. uravneniya, 59:6 (2023), 851–852

[7] Sergeev I.N., “Svoistva mer ustoichivosti i neustoichivosti nulevogo resheniya differentsialnoi sistemy”, Differents. uravneniya, 59:11 (2023), 1577–1579

[8] Lyapunov A.M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950 | MR

[9] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[10] Sergeev I.N., “Opredelenie i nekotorye svoistva ustoichivosti po Perronu”, Differents. uravneniya, 55:5 (2019), 636–646 | DOI | Zbl

[11] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Z., 31:1 (1930), 748–766 | DOI | MR

[12] Izobov N.A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[13] Sergeev I.N., “Opredelenie verkhnepredelnoi ustoichivosti i ee svyaz s ustoichivostyu po Lyapunovu i ustoichivostyu po Perronu”, Differents. uravneniya, 56:11 (2020), 1556–1557

[14] Sergeev I.N., “Massivnye i pochti massivnye svoistva ustoichivosti i neustoichivosti differentsialnykh sistem”, Differents. uravneniya, 57:11 (2021), 1576–1578

[15] Bondarev A.A., Sergeev I.N., “Primery differentsialnykh sistem s kontrastnymi sochetaniyami lyapunovskikh, perronovskikh i verkhnepredelnykh svoistv”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 506 (2022), 25–29

[16] Sergeev I.N., “Lyapunovskie, perronovskie i verkhnepredelnye svoistva ustoichivosti avtonomnykh differentsialnykh sistem”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 56:2 (2020), 63–78 | Zbl

[17] Filippov A.F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004