Front propagation of branching random walk with periodic branching sources
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 31-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the model of branching random walk on an integer lattice $\mathbb{Z}^d$ with periodic sources of branching. It is supposed that the regime of branching is supercritical and, for a jump of the random walk, the Cramér condition is satisfied. The theorem established describes the rate of front propagation for particles population over the lattice as the time increases unboundedly. The proofs are based on fundamental results related to the spatial spread of general branching random walk.
			
            
            
            
          
        
      @article{VMUMM_2024_1_a3,
     author = {E. Vl. Bulinskaya},
     title = {Front propagation of branching random walk with periodic branching sources},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--40},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/}
}
                      
                      
                    TY - JOUR AU - E. Vl. Bulinskaya TI - Front propagation of branching random walk with periodic branching sources JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2024 SP - 31 EP - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/ LA - ru ID - VMUMM_2024_1_a3 ER -
E. Vl. Bulinskaya. Front propagation of branching random walk with periodic branching sources. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 31-40. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/
