Front propagation of branching random walk with periodic branching sources
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 31-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the model of branching random walk on an integer lattice $\mathbb{Z}^d$ with periodic sources of branching. It is supposed that the regime of branching is supercritical and, for a jump of the random walk, the Cramér condition is satisfied. The theorem established describes the rate of front propagation for particles population over the lattice as the time increases unboundedly. The proofs are based on fundamental results related to the spatial spread of general branching random walk.
@article{VMUMM_2024_1_a3,
     author = {E. Vl. Bulinskaya},
     title = {Front propagation of branching random walk with periodic branching sources},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--40},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - Front propagation of branching random walk with periodic branching sources
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 31
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/
LA  - ru
ID  - VMUMM_2024_1_a3
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T Front propagation of branching random walk with periodic branching sources
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 31-40
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/
%G ru
%F VMUMM_2024_1_a3
E. Vl. Bulinskaya. Front propagation of branching random walk with periodic branching sources. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 31-40. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a3/

[1] Platonova M.V., Ryadovkin K.S., “Asimptoticheskoe povedenie srednego chisla chastits vetvyaschegosya sluchainogo bluzhdaniya na reshetke $\mathbb{Z}^d$ s periodicheskimi istochnikami vetvleniya”, Zap. nauch. seminarov POMI, 466, 2017, 234–256

[2] Platonova M.V., Ryadovkin K.S., “O srednem chisle chastits vetvyaschegosya sluchainogo bluzhdaniya na reshetke $\mathbb{Z}^d$ s periodicheskimi istochnikami vetvleniya”, Dokl. RAN, 479:3 (2018), 250–253 | DOI | Zbl

[3] Brémaud P., Markov Shains: Gibbs Fields, Monte-Carlo Simulation, and Queues, Second ed., Springer, Cham, 2020 | MR

[4] Sevastyanov B.A., Vetvyaschiesya protsessy, Nauka, M., 1971

[5] Biggins J.D., How fast does a general branching random walk spread?, Classical and Modern Branching Processes, The IMA Volumes in Mathematics and its Applications, 84, eds. K.B. Athreya, P. Jagers, Springer, N.Y., 1997, 19–39 | DOI | MR | Zbl

[6] Molchanov S.A., Yarovaya E.B., “Vetvyaschiesya protsessy s reshetchatoi prostranstvennoi dinamikoi i konechnym chislom tsentrov generatsii chastits”, Dokl. RAN, 446:3 (2012), 259–262 | Zbl

[7] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. and Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[8] Carmona Ph., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré Probab. Stat., 50:2 (2014), 327–351 | MR | Zbl

[9] Platonova M.V., Ryadovkin K.S., “Vetvyaschiesya sluchainye bluzhdaniya na $Z^d$ s periodicheski raspolozhennymi istochnikami vetvleniya”, Teor. veroyatn. i ee primen., 64:2 (2019), 283–307 | DOI | MR | Zbl

[10] Borovkov A.A., Teoriya veroyatnostei, URSS, M., 2021

[11] Feller V., Vvedenie v teoriyu veroyatnostei, v. 2, Mir, M., 1984

[12] Biggins J.D., “The asymptotic shape of the branching random walk”, Adv. Appl. Probab., 10:1 (1978), 62–84 | DOI | MR | Zbl

[13] Kallenberg O., Foundations of Modern Probability, Springer, N.Y., 2001 | MR