Kolmogorov's ideas on the theory of integral in modern research
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 20-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalizations of construction of Kolmogorov integral to the case of Banach space-valued functions are considered. We demonstrate how the Kolmogorov ideas on integration theory, in particular the notion of differential equivalence, have been developed in the theory of the Henstock–Kurzweil integral. In this connection, a variational version of a Henstock type integral with respect to a rather general derivation basis is studied. An example of an application of this integral in harmonic analysis is given. Some results related to Kolmogorov $A$-integral are also considered.
@article{VMUMM_2024_1_a2,
     author = {T. P. Lukashenko and V. A. Skvortsov and A. P. Solodov},
     title = {Kolmogorov's ideas on the theory of integral in modern research},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {20--31},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a2/}
}
TY  - JOUR
AU  - T. P. Lukashenko
AU  - V. A. Skvortsov
AU  - A. P. Solodov
TI  - Kolmogorov's ideas on the theory of integral in modern research
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 20
EP  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a2/
LA  - ru
ID  - VMUMM_2024_1_a2
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%A V. A. Skvortsov
%A A. P. Solodov
%T Kolmogorov's ideas on the theory of integral in modern research
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 20-31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a2/
%G ru
%F VMUMM_2024_1_a2
T. P. Lukashenko; V. A. Skvortsov; A. P. Solodov. Kolmogorov's ideas on the theory of integral in modern research. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 20-31. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a2/