Nonclassical problems of the mathematical theory of hydrodynamic boundary layer
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 11-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonclassical problems in mathematical hydrodynamics arise when studying the motion of rheologically complex media, as well as under boundary conditions different from classical ones. In this paper, existence and uniqueness theorems are established for the classical solution to the problem of a stationary boundary layer of a liquid with the rheological law of O. A. Ladyzhenskaya near a solid wall with given conditions characterizing the force of surface tension and the phenomenon of slipping near this wall.
@article{VMUMM_2024_1_a1,
     author = {V. N. Samokhin and G. A. Chechkin},
     title = {Nonclassical problems of the mathematical theory of hydrodynamic boundary layer},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--20},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a1/}
}
TY  - JOUR
AU  - V. N. Samokhin
AU  - G. A. Chechkin
TI  - Nonclassical problems of the mathematical theory of hydrodynamic boundary layer
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 11
EP  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a1/
LA  - ru
ID  - VMUMM_2024_1_a1
ER  - 
%0 Journal Article
%A V. N. Samokhin
%A G. A. Chechkin
%T Nonclassical problems of the mathematical theory of hydrodynamic boundary layer
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 11-20
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a1/
%G ru
%F VMUMM_2024_1_a1
V. N. Samokhin; G. A. Chechkin. Nonclassical problems of the mathematical theory of hydrodynamic boundary layer. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 11-20. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a1/

[1] Pelenko V.V., Aret V.A., Daineko K.E., Verboloz E.I., Ivanenko V.P., Pelenko F.V., Krysin A.G., “Osobennosti techeniya tonkikh plenok v usloviyakh proskalzyvaniya na obtekaemoi poverkhnosti”, Nauch. zhurn. NIU ITMO. Seriya: Protsessy i apparaty pischevykh proizvodstv, 2012, no. 2

[2] Oleinik O.A., Kruzhkov S.N., “Kvazilineinye parabolicheskie uravneniya vtorogo poryadka so mnogimi nezavisimymi peremennymi”, Uspekhi matem. nauk, 16:5 (1961), 116–155

[3] Ilin A.M., Kalashnikov A.S., Oleinik O.A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3 (1962), 3–146 | MR | Zbl

[4] Oleinik O.A., Samokhin V.N., Matematicheskie metody v teorii pogranichnogo sloya, Nauka, Fizmatlit, M., 1997 | MR

[5] Kisatov M.A., Samokhin V.N., Chechkin G.A., “O temperaturnom pogranichnom sloe v vyazkoi nenyutonovskoi srede”, Dokl. RAN. Ser. matem., informatika, protsessy upravleniya, 502 (2022), 28–33 | MR | Zbl