Exact estimates for higher order derivatives in Sobolev spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper describes the splines $Q_{n,k}(x,a)$, which define the relations $y^{(k)}(a)=\int_0^1 y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx$ for an arbitrary point $a\in(0;1)$ and an arbitrary function $y\in\mathring{W}^n_p[0;1]$. The connection of the minimization of the norm $\|Q^{(n)}_{n,k}\|_{L_{p'}[0;1]}$ ($1/ p+1/p'=1$) by parameter $a$ with the problem of best estimates for derivatives $|y^{(k)}(a)|\leqslant A_{n,k,p}(a)\|y^{(n)}\|_{L_p[0;1]}$, and also with the problem of finding the exact embedding constants of the Sobolev space $\mathring{W}^n_p[0;1]$ into the space $\mathring{W}^k_\infty[0;1]$, $n\in\mathbb{N}$, $0\leqslant k\leqslant n-1$. Exact embedding constants are found for all $n\in\mathbb{N}$, $k=n-1$ for $p=1$ and for $p=\infty$.
@article{VMUMM_2024_1_a0,
     author = {T. A. Garmanova and I. A. Sheipak},
     title = {Exact estimates for higher order derivatives in {Sobolev} spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/}
}
TY  - JOUR
AU  - T. A. Garmanova
AU  - I. A. Sheipak
TI  - Exact estimates for higher order derivatives in Sobolev spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 3
EP  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/
LA  - ru
ID  - VMUMM_2024_1_a0
ER  - 
%0 Journal Article
%A T. A. Garmanova
%A I. A. Sheipak
%T Exact estimates for higher order derivatives in Sobolev spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 3-10
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/
%G ru
%F VMUMM_2024_1_a0
T. A. Garmanova; I. A. Sheipak. Exact estimates for higher order derivatives in Sobolev spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/

[1] Shmidt E., “Über die Ungleichung, welche die Integrale über eine Potenz einer Function und über eine andere Potenz ihrer Ableitung verbindet”, Math. Ann, 117 (1940), 301–326 | DOI | MR

[2] Nazarov A.I., “On exact constant in the generalized Poincaré inequality”, J. Math. Sci, 112:1 (2002), 4029–4047 | DOI | MR | Zbl

[3] Kalyabin G.A., “Tochnye otsenki dlya proizvodnykh funktsii iz klassov Soboleva $\mathring{W}^{r}_2(-1;1)$”, Tr. Matem. in-ta RAN, 269, 2010, 143–149 | Zbl

[4] Mukoseeva E.V., Nazarov A.I., “O simmetrii ektremali v nekotorykh teoremakh vlozheniya”, Zap. nauch. seminara POMI, 425, 2014, 35–45 ; Corrigendum, Зап. науч. семинара ПОМИ, 489, 2020, 225

[5] Garmanova T.A., “Otsenki proizvodnykh v prostranstvakh Soboleva v terminakh gipergeometricheskikh funktsii”, Matem. zametki, 109:4 (2021), 500–507 | DOI | MR | Zbl

[6] Garmanova T.A., Sheipak I.A., “O tochnykh otsenkakh proizvodnykh chetnogo poryadka v prostranstvakh Soboleva”, Funkts. analiz i ego pril., 55:1 (2021), 43–55 | DOI | MR | Zbl

[7] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 19–37

[8] Pinkus A., On $L^1$-approximation, Cambridge University Press, Cambridge, 1989 | MR

[9] Garmanova T.A., Sheipak I.A., “Yavnyi vid ekstremalei v zadache o konstantakh vlozheniya v prostranstvakh Soboleva”, Tr. Mosk. matem. o-va, 80, no. 2, 2019, 221–246 | MR | Zbl

[10] Deikalova M.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii sfericheskoi shapochki algebraicheskimi mnogochlenami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 144–155