Exact estimates for higher order derivatives in Sobolev spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the splines $Q_{n,k}(x,a)$, which define the relations $y^{(k)}(a)=\int_0^1 y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx$ for an arbitrary point $a\in(0;1)$ and an arbitrary function $y\in\mathring{W}^n_p[0;1]$. The connection of the minimization of the norm $\|Q^{(n)}_{n,k}\|_{L_{p'}[0;1]}$ ($1/ p+1/p'=1$) by parameter $a$ with the problem of best estimates for derivatives $|y^{(k)}(a)|\leqslant A_{n,k,p}(a)\|y^{(n)}\|_{L_p[0;1]}$, and also with the problem of finding the exact embedding constants of the Sobolev space $\mathring{W}^n_p[0;1]$ into the space $\mathring{W}^k_\infty[0;1]$, $n\in\mathbb{N}$, $0\leqslant k\leqslant n-1$. Exact embedding constants are found for all $n\in\mathbb{N}$, $k=n-1$ for $p=1$ and for $p=\infty$.
@article{VMUMM_2024_1_a0,
     author = {T. A. Garmanova and I. A. Sheipak},
     title = {Exact estimates for higher order derivatives in {Sobolev} spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/}
}
TY  - JOUR
AU  - T. A. Garmanova
AU  - I. A. Sheipak
TI  - Exact estimates for higher order derivatives in Sobolev spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2024
SP  - 3
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/
LA  - ru
ID  - VMUMM_2024_1_a0
ER  - 
%0 Journal Article
%A T. A. Garmanova
%A I. A. Sheipak
%T Exact estimates for higher order derivatives in Sobolev spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2024
%P 3-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/
%G ru
%F VMUMM_2024_1_a0
T. A. Garmanova; I. A. Sheipak. Exact estimates for higher order derivatives in Sobolev spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2024), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2024_1_a0/