Insurance models with discrete time
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 42-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two discrete-time insurance models are considered. The first model studies non-proportional reinsurance and bank loans. For this model, we establish the optimal control and stability to small fluctuation of parameters and perturbation of random variables distributions describing the model. The second model is dual and the ruin probabilities are compared under assumption that the gains distributions satisfy one of four partial orders.
@article{VMUMM_2023_6_a6,
     author = {E. V. Bulinskaya},
     title = {Insurance models with discrete time},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--52},
     year = {2023},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a6/}
}
TY  - JOUR
AU  - E. V. Bulinskaya
TI  - Insurance models with discrete time
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 42
EP  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a6/
LA  - ru
ID  - VMUMM_2023_6_a6
ER  - 
%0 Journal Article
%A E. V. Bulinskaya
%T Insurance models with discrete time
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 42-52
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a6/
%G ru
%F VMUMM_2023_6_a6
E. V. Bulinskaya. Insurance models with discrete time. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 42-52. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a6/

[1] Bulinskaya E.V., “New research directions in modern actuarial sciences”, Modern Problems of Stochastic Analysis and Statistics — Selected Contributions in Honor of Valentin Konakov, ed. V. Panov, Springer, Berlin–Heidelberg–N.Y., 2017, 349–408 | DOI | MR | Zbl

[2] Ehrgott M., Multicriteria Optimization, Second ed., Springer, Berlin–Heidelberg–N.Y., 2005 | MR | Zbl

[3] Luesamai A., “Lower and upper bounds of the ultimate ruin probability in a discrete time risk model with proportional reinsurance and investment”, J. Risk Management and Insurance, 25:1 (2021), 1–10

[4] Bata K., Shmidli H., “Optimal capital injections and dividends with tax in a risk model in discrete time”, Eur. Actuar. J., 10 (2020), 235–259 | DOI | MR | Zbl

[5] Bulinskaya E., “Asymptotic analysis and optimization of some insurance models”, Appl. Stochast. Models in Business and Industry, 34:6 (2018), 762–773 | DOI | MR | Zbl

[6] Bulinskaya E., “Asymptotic analysis of insurance models with bank loans”, New Perspectives on Stochastic Modeling and Data Analysis, eds. J.-R. Bozeman, V. Girardin, Ch. Skiadas, ISAST, Athens, Greece, 2014, 255–270

[7] Bulinskaya E., Gusak J., “Optimal control and sensitivity analysis for two risk models”, Communs Statistics — Simulation and Computation, 45:5 (2016), 1451–1466 | DOI | MR | Zbl

[8] Bulinskaya E., Gusak J., Muromskaya A., “Discrete-time insurance model with capital injections and reinsurance”, Methodol. and Comput. Appl. Probab., 17 (2015), 899–914 | DOI | MR | Zbl

[9] Gerber H.-U., “Mathematical fun with compound binomial process”, ASTIN Bull, 18:2 (1988), 161–168 | DOI

[10] Li S., Lu Y., Garrido J., “A review of discrete-time risk models”, Rev. Real Acad. Ciencias Naturales. Ser. A. Matemáticas, 103 (2009), 321–337 | MR | Zbl

[11] Dickson D.-C.-M., Waters H.-R., “Some optimal dividends problems”, ASTIN Bull, 34 (2004), 49–74 | DOI | MR | Zbl

[12] Bulinskaya E.V., Teoriya riska i perestrakhovanie, OOO “Meilor”, M., 2008

[13] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1960

[14] Rachev S., Stoyanov S., Fabozzi F., A probability metrics approach to financial risk measures, John Wiley Sons, Oxford, UK, 2011 | MR

[15] Billingsley P., Convergence of probability measures, 2nd ed., Wiley, N.Y., 1999 | MR | Zbl

[16] Cramer H., Collective risk theory: A survey of the theory from the point of view of the theory of stochastic process, Ab Nordiska Bokhandeln, Stockholm, 1955 | MR

[17] Palmowski Z., Ramsden L., Papaioannou A.D., Parisian ruin for the dual risk process in discrete-time, 19 Aug 2017, arXiv: 1708.06785v1 [math.PR] | MR

[18] Fahim A., Zhu Li., Optimal investment in a dual risk model, 2 Feb 2023, arXiv: 1510.04924v2 [q-fin.RM]

[19] Avanzi B., Gerber H.U., Shiu E.S., “Optimal dividends in the dual model”, Insurance: Mathematics and Economics, 41:1 (2007), 111–123 | DOI | MR | Zbl

[20] Bergel A. I., Rodrigues-Martinez E.V., Egidio dos Reis A.D., “On dividends in the phase-type dual risk model”, Scand. Actuar. J., 2017 (2017), 1–24 | DOI | MR

[21] Cheung E.C., Drekic S., “Dividend moments in the dual risk model: exact and approximate approaches”, ASTIN Bull., 38:2 (2008), 399–422 | DOI | MR | Zbl

[22] Ng A.C., “On a dual model with a dividend threshold”, Insurance: Mathematics and Economics, 44:2 (2009), 315–324 | DOI | MR | Zbl

[23] Bulinskaya E.V., “New dividend strategies”, Applied Modeling Techniques and Data Analysis, v. 2, Willey, London, 2021, 39–52 | DOI

[24] Albrecher H., Badescu A., Landriault D., “On the dual risk model with tax payment”, Insurance: Mathematics and Economics, 42:3 (2008), 1086–1094 | DOI | MR | Zbl

[25] Willmot G.E., “Ruin probabilities in the compound binomial model”, Insurance: Mathematics and Economics, 12:2 (1993), 133–142 | DOI | MR | Zbl

[26] Li S., Sendova K.P., “The finite-time ruin probability under the compound binomial risk model”, Eur. Actuar. J., 3:1 (2013), 249–271 | DOI | MR | Zbl

[27] Shaked M., Shantikumar J.G., Stochastic orders, Springer Series Statistics, Springer, N.Y., 2007 | DOI | MR | Zbl

[28] Mulero J., Sordo M.A., “Two stochastic dominance criteria based on tail comparisons”, Appl. Stochast. Models in Business and Industry, 33:6 (2017), 575–589 | DOI | MR | Zbl