Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 36-42
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond a level tending to infinity more slowly than in the Poisson limit theorem for the number of exits. Convergence in variation of such point processes to a marked Poisson process is proved. The results of Yu. V. Prokhorov on the best approximation of the Bernoulli distribution by a mixture of Gaussian and Poisson distributions are applied. A. N. Kolmogorov proposed this problem in the early 1950s.
@article{VMUMM_2023_6_a5,
     author = {V. I. Piterbarg},
     title = {Asymptotic behavior of point processes of exits of a {Gaussian} stationary sequence beyond high levels},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--42},
     year = {2023},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 36
EP  - 42
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/
LA  - ru
ID  - VMUMM_2023_6_a5
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 36-42
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/
%G ru
%F VMUMM_2023_6_a5
V. I. Piterbarg. Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 36-42. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/

[1] Piterbarg V.I., Dvadtsat lektsii o gaussovskikh protsessakh, MTsNMO, M., 2015

[2] Mittal Y., Ylvisaker D., “Limit distribution for the maxima of stationary Gaussian processes”, Stochast. Process. and their Appl., 3 (1975), 1–18 | DOI | MR | Zbl

[3] Piterbarg V.I., Asymptotic methods in theory of Gaussian random processes and fields, Translations of Mathematical Monographs, 148, Amer. Math. Soc., Providence, 2012 | MR

[4] Prokhorov Yu.V., “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matem. nauk, 8:3 (1953), 135–142 | MR | Zbl

[5] Kozulyaev P.A., “Asimptoticheskii analiz odnoi osnovnoi formuly teorii veroyatnostei”, Uch. zap. Mosk. un-ta, 15 (1939), 179–182

[6] Bogachev V.I., Osnovy teorii mery, v. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003

[7] Resnick S.I., Extreme values, regular variation, and point processes, Springer-Verlag, N.Y.–Berlin–Heidelberg, 1987 | MR | Zbl

[8] Berman S., Sojourns and extremes of stochastic processes, CRC Press, Taylor, London, 1992 | MR

[9] Ben Arous G., Bogachev L., Molchanov S., “Limit theorems for sums of random exponentials”, Probab. Theory and Related Fields, 132:4 (2005), 579–612 | DOI | MR | Zbl

[10] Molchanov S., Panov V., “Limit theorems for the alloy-type random energy model”, Stochastics, 91:5 (2019), 754–772, arXiv: 1802.05071v1 [math.PR] | DOI | MR | Zbl