Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 36-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond a level tending to infinity more slowly than in the Poisson limit theorem for the number of exits. Convergence in variation of such point processes to a marked Poisson process is proved. The results of Yu. V. Prokhorov on the best approximation of the Bernoulli distribution by a mixture of Gaussian and Poisson distributions are applied. A. N. Kolmogorov proposed this problem in the early 1950s.
@article{VMUMM_2023_6_a5,
     author = {V. I. Piterbarg},
     title = {Asymptotic behavior of point processes of exits of a {Gaussian} stationary sequence beyond high levels},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--42},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 36
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/
LA  - ru
ID  - VMUMM_2023_6_a5
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 36-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/
%G ru
%F VMUMM_2023_6_a5
V. I. Piterbarg. Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 36-42. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a5/