Exact Baire classification of local entropy of parametric sets of dynamical systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 27-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a parametric family of dynamical systems defined on a locally compact metric space and continuously dependent on a parameter from some metric space. For any such family, the local entropy of the dynamical systems included in it is studied as a function of a parameter from the point of view of the Baire classification of functions.
@article{VMUMM_2023_6_a4,
     author = {A. N. Vetokhin},
     title = {Exact {Baire} classification of local entropy of parametric sets of dynamical systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {27--36},
     year = {2023},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a4/}
}
TY  - JOUR
AU  - A. N. Vetokhin
TI  - Exact Baire classification of local entropy of parametric sets of dynamical systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 27
EP  - 36
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a4/
LA  - ru
ID  - VMUMM_2023_6_a4
ER  - 
%0 Journal Article
%A A. N. Vetokhin
%T Exact Baire classification of local entropy of parametric sets of dynamical systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 27-36
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a4/
%G ru
%F VMUMM_2023_6_a4
A. N. Vetokhin. Exact Baire classification of local entropy of parametric sets of dynamical systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 27-36. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a4/

[1] Kolmogorov A.N., “Asimptoticheskie kharakteristiki vpolne ogranichennykh metricheskikh prostranstv”, Dokl. AN SSSR, 179:3 (1956), 585–589

[2] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005

[3] Katok A.B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[4] Misiurewicz M., “Horseshoes for mappings of the interval”, Bull. Acad. pol. sci. Ser. sci. math., astron. et phys., 27 (1979), 167–169 | MR | Zbl

[5] Vetokhin A.N., “O mnozhestve nepreryvnosti topologicheskoi entropii semeistva otobrazhenii otrezka, zavisyaschikh ot parametra”, Funkts. analiz i ego pril., 55:3 (2021), 42–50 | DOI | MR | Zbl

[6] Vetokhin A.N., “Tipichnoe svoistvo topologicheskoi entropii nepreryvnykh otobrazhenii kompaktov”, Differents. uravneniya, 53:4 (2017), 448–453 | DOI | MR | Zbl

[7] Vetokhin A.N., “Stroenie mnozhestv tochek polunepreryvnosti topologicheskoi entropii dinamicheskikh sistem, nepreryvno zavisyaschikh ot parametra”, Vestn. Mosk. un-ta. Matem. Mekhan., 2019, no. 4, 69–72

[8] Vetokhin A.N., “O nekotorykh svoistvakh topologicheskoi entropii i topologicheskogo davleniya semeistv dinamicheskikh sistem, nepreryvno zavisyaschikh ot parametra”, Differents. uravneniya, 55:10 (2019), 1319–1327 | DOI | MR | Zbl

[9] Vetokhin A.N., “Neprinadlezhnost pervomu klassu Bera topologicheskoi entropii na prostranstve gomeomorfizmov”, Vestn. Mosk. un-ta. Matem. Mekhan., 2018, no. 5, 64–67

[10] Vetokhin A.N., “O nekotorykh svoistvakh topologicheskoi entropii semeistva dinamicheskikh sistem, opredelennykh na proizvolnom metricheskom prostranstve”, Differents. uravneniya, 57:10 (2021), 1005–1013 | DOI | Zbl

[11] Khausdorf F., Teoriya mnozhestv, ONTI. Gl. red. tekhn.-teor. lit-ry, M., 1937

[12] Vetokhin A.N., “Klass Bera polunepreryvnykh snizu minorant pokazatelei Lyapunova”, Differents. uravneniya, 34:10 (2019), 1313–1317 | MR