Solution of the Kolmogorov–Feller equation arising in the model of biological evolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 23-27
Cet article a éte moissonné depuis la source Math-Net.Ru
The Kolmogorov–Feller equation for the probability density of a Markov process on a half-axis, which arises in important problems of biology, is considered. This process consists of random jumps distributed according to Laplace's law and a deterministic return to zero. It is shown that the Green's function for such an equation can be found both in the form of a series and in explicit form for some ratios of the parameters. This allows one to find explicit solutions to the Kolmogorov–Feller equation for many initial data.
@article{VMUMM_2023_6_a3,
author = {O. S. Rozanova},
title = {Solution of the {Kolmogorov{\textendash}Feller} equation arising in the model of biological evolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--27},
year = {2023},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a3/}
}
TY - JOUR AU - O. S. Rozanova TI - Solution of the Kolmogorov–Feller equation arising in the model of biological evolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 23 EP - 27 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a3/ LA - ru ID - VMUMM_2023_6_a3 ER -
O. S. Rozanova. Solution of the Kolmogorov–Feller equation arising in the model of biological evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 23-27. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a3/
[1] Friedman N., Cai L., Xie X.S., “Linking stochastic dynamics to population distribution: an analytical framework of gene expression”, Phys. Rev. Lett, 97:16 (2006), 168302 | DOI
[2] Huang G.R., Saakian D.B., Rozanova O.S., Yu J.L., Hu C.K., “Exact solution of master equation with Gaussian and compound Poisson noises”, J. Stat. Mech.: Theory and Experiment, 11 (2014), 11033 | MR
[3] Bokes P., “Heavy-tailed distributions in a stochastic gene autoregulation model”, J. Stat. Mech.: Theory and Experiment, 11 (2021), 113403 | DOI | MR