Chebyshev subspaces of Dirichlet series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23
Cet article a éte moissonné depuis la source Math-Net.Ru
A. Haar and A. N. Kolmogorov found necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, we prove that subspaces of Dirichlet series in the space of $C(0, \infty ]$ of continuous and bounded functions in the interval $(0, \infty )$ that have a limit at infinity form Chebyshev subspaces.
@article{VMUMM_2023_6_a2,
author = {V. M. Fedorov},
title = {Chebyshev subspaces of {Dirichlet} series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {17--23},
year = {2023},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/}
}
V. M. Fedorov. Chebyshev subspaces of Dirichlet series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/
[1] Leontev A.F., Ryady eksponent, Nauka, M., 1976 | MR
[2] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[3] Clarkson J.A., Erdos P., “Approximation by polynomials”, Duke. Math. J., 10 (1943), 5–11 | DOI | MR | Zbl
[4] Polia G., Sege G., Zadachi i teoremy iz analiza, v. I, Nauka, M., 1978 | MR
[5] Danford N., Shvarts Dzh., Lineinye operatory, v. I, IL, M., 1962
[6] Phelps R., “Chebyshev subspace of finite codimension in $C (X)$”, Pacif. J. Math., 13:2 (1963), 647–655 | DOI | MR | Zbl
[7] Dei M., Normirovannye lineinye prostranstva, IL, M., 1961
[8] Polia G., Sege G., Zadachi i teoremy iz analiza, v. II, Nauka, M., 1978 | MR
[9] Raikov D.A., Vektornye prostranstva, GIFML, M., 1962