Chebyshev subspaces of Dirichlet series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23

Voir la notice de l'article provenant de la source Math-Net.Ru

A. Haar and A. N. Kolmogorov found necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, we prove that subspaces of Dirichlet series in the space of $C(0, \infty ]$ of continuous and bounded functions in the interval $(0, \infty )$ that have a limit at infinity form Chebyshev subspaces.
@article{VMUMM_2023_6_a2,
     author = {V. M. Fedorov},
     title = {Chebyshev subspaces of {Dirichlet} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--23},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/}
}
TY  - JOUR
AU  - V. M. Fedorov
TI  - Chebyshev subspaces of Dirichlet series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 17
EP  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/
LA  - ru
ID  - VMUMM_2023_6_a2
ER  - 
%0 Journal Article
%A V. M. Fedorov
%T Chebyshev subspaces of Dirichlet series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 17-23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/
%G ru
%F VMUMM_2023_6_a2
V. M. Fedorov. Chebyshev subspaces of Dirichlet series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/