Chebyshev subspaces of Dirichlet series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23
Voir la notice de l'article provenant de la source Math-Net.Ru
A. Haar and A. N. Kolmogorov found necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, we prove that subspaces of Dirichlet series in the space of $C(0, \infty ]$ of continuous and bounded functions in the interval $(0, \infty )$ that have a limit at infinity form Chebyshev subspaces.
@article{VMUMM_2023_6_a2,
author = {V. M. Fedorov},
title = {Chebyshev subspaces of {Dirichlet} series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {17--23},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/}
}
V. M. Fedorov. Chebyshev subspaces of Dirichlet series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 17-23. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a2/