Travelling wave solutions to two-velocity deep bed filtration equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70
Voir la notice de l'article provenant de la source Math-Net.Ru
Travelling wave solutions to the deep bed filtration system are constructed for a model with different velocities of a carrier fluid and suspended particles. The solution in quadratures is obtained when the velocity of the carrier fluid and that of the particles differ by a concentration-dependent factor. For some special cases, the physically realizable domains are found in the space of governing parameters. Solutions that may be interpreted as a clogging wave structure are presented.
@article{VMUMM_2023_6_a10,
author = {N. E. Leont'ev and K. Taurbayeva},
title = {Travelling wave solutions to two-velocity deep bed filtration equations},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {65--70},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/}
}
TY - JOUR AU - N. E. Leont'ev AU - K. Taurbayeva TI - Travelling wave solutions to two-velocity deep bed filtration equations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 65 EP - 70 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/ LA - ru ID - VMUMM_2023_6_a10 ER -
N. E. Leont'ev; K. Taurbayeva. Travelling wave solutions to two-velocity deep bed filtration equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/