Travelling wave solutions to two-velocity deep bed filtration equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Travelling wave solutions to the deep bed filtration system are constructed for a model with different velocities of a carrier fluid and suspended particles. The solution in quadratures is obtained when the velocity of the carrier fluid and that of the particles differ by a concentration-dependent factor. For some special cases, the physically realizable domains are found in the space of governing parameters. Solutions that may be interpreted as a clogging wave structure are presented.
@article{VMUMM_2023_6_a10,
     author = {N. E. Leont'ev and K. Taurbayeva},
     title = {Travelling wave solutions to two-velocity deep bed filtration equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--70},
     year = {2023},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/}
}
TY  - JOUR
AU  - N. E. Leont'ev
AU  - K. Taurbayeva
TI  - Travelling wave solutions to two-velocity deep bed filtration equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 65
EP  - 70
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/
LA  - ru
ID  - VMUMM_2023_6_a10
ER  - 
%0 Journal Article
%A N. E. Leont'ev
%A K. Taurbayeva
%T Travelling wave solutions to two-velocity deep bed filtration equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 65-70
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/
%G ru
%F VMUMM_2023_6_a10
N. E. Leont'ev; K. Taurbayeva. Travelling wave solutions to two-velocity deep bed filtration equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/

[1] Herzig J.P., Leclerc D.M., Le Goff P., “Flow of suspensions through porous media. Application to deep filtration”, Ind. and Eng. Chem., 62:5 (1970), 8–35 | DOI

[2] Shekhtman Yu.M., Filtratsiya malokontsentrirovannykh suspenzii, Izd-vo AN SSSR, M., 1961

[3] Khuzhaerov B., “Model filtratsii suspenzii s uchetom kolmatatsii i suffozii”, Inzh.-fiz. zhurn., 63:1 (1992), 72–79

[4] Kapranov Yu.I., “O filtratsii vzvesi tverdykh chastits”, Prikl. matem. i mekhan., 63:4 (1999), 620–628 | MR | Zbl

[5] Kon S., Ledder G., Logan D., “Analiz modeli filtratsii v poristoi srede”, Matem. modelir., 13:2 (2001), 110–116 | MR

[6] Logan J.D., Transport modeling in hydrogeochemical systems, Springer, N.Y., 2001 | MR | Zbl

[7] Altoé J.E., Bedrikovetsky P., Siqueira A.G., et al., “Correction of basic equations for deep bed filtration with dispersion”, J. Petrol. Sci. and Eng., 51 (2006), 68–84 | DOI

[8] Leontev N.E., “O strukture fronta poristosti pri dvizhenii suspenzii v poristoi srede”, Vestn. Mosk. un-ta. Matem. Mekhan., 2006, no. 5, 73–76

[9] Leontev N.E., “Tochnye resheniya zadachi o filtratsii suspenzii s zamedleniem skachka kontsentratsii v ramkakh nelineinoi dvukhskorostnoi modeli”, Izv. RAN. Mekhan. zhidkosti i gaza, 2017, no. 1, 168–174 | DOI | Zbl

[10] Laitkhill Dzh., Matematicheskaya biogidrodinamika, Institut kompyuternykh issledovanii, M.–Izhevsk, 2014

[11] Civan F., “Modified formulations of particle deposition and removal kinetics in saturated porous media”, Transp. Porous Med., 111 (2016), 381–410 | DOI

[12] Ryzhikov N.I., Eksperimentalnoe issledovanie dinamiki zakhvata chastits i izmeneniya pronitsaemosti pri filtratsii suspenzii cherez poristuyu sredu, Kand. dis., M., 2014

[13] Leontiev N.E., “The problem of suspension injection into a porous medium within a two-velocity model of deep bed filtration”, J. Phys.: Conf. Ser., 1392 (2019), 012013 | DOI

[14] Civan F., Rasmussen M.L., “Analytical models for porous media impairment by particles in rectilinear and radial flows”, Handbook of Porous Media, 2nd ed., ed. K. Vafai, CRC Press, Boca Raton, 2005, 485–542