Travelling wave solutions to two-velocity deep bed filtration equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Travelling wave solutions to the deep bed filtration system are constructed for a model with different velocities of a carrier fluid and suspended particles. The solution in quadratures is obtained when the velocity of the carrier fluid and that of the particles differ by a concentration-dependent factor. For some special cases, the physically realizable domains are found in the space of governing parameters. Solutions that may be interpreted as a clogging wave structure are presented.
@article{VMUMM_2023_6_a10,
     author = {N. E. Leont'ev and K. Taurbayeva},
     title = {Travelling wave solutions to two-velocity deep bed filtration equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--70},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/}
}
TY  - JOUR
AU  - N. E. Leont'ev
AU  - K. Taurbayeva
TI  - Travelling wave solutions to two-velocity deep bed filtration equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 65
EP  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/
LA  - ru
ID  - VMUMM_2023_6_a10
ER  - 
%0 Journal Article
%A N. E. Leont'ev
%A K. Taurbayeva
%T Travelling wave solutions to two-velocity deep bed filtration equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 65-70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/
%G ru
%F VMUMM_2023_6_a10
N. E. Leont'ev; K. Taurbayeva. Travelling wave solutions to two-velocity deep bed filtration equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 65-70. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a10/