@article{VMUMM_2023_6_a1,
author = {M. P. Savelov},
title = {Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--16},
year = {2023},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/}
}
M. P. Savelov. Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 9-16. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/
[1] Borovkov A.A., Matematicheskaya statistika, 3-e izd., Fizmatlit, M., 2007
[2] Serfling R.J., Approximation theorems of mathematical statistics, John Wiley Sons, N.Y., 1980 | MR | Zbl
[3] van der Vaart A.W., Asymptotic statistics, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[4] Huber P.J., “Robust estimation of a location parameter”, Ann. Math. Statist, 35:1 (1964), 73–101 | DOI | MR | Zbl
[5] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl
[6] Koroljuk V.S., Borovskich Yu.V., Theory of $U$-statistics, Kluwer Academic Publishers Group, Dordrecht, 1994 | MR | Zbl
[7] DasGupta A., Asymptotic theory of statistics and probability, Springer New York, N.Y., 2008 | MR | Zbl
[8] He X., Shao Q-M., “A general Bahadur representation of $M$-estimators and its application to linear regression with nonstochastic designs”, Ann. Statist, 24:6 (1996), 2608–2630 | MR | Zbl
[9] Bose A., “Bahadur representation of $M_m$ estimates”, Ann. Statist., 26:2 (1998), 771–777 | DOI | MR | Zbl
[10] Sukhatme B.V., “Joint asymptotic distribution of the median and a $U$ statistic”, J. Roy. Statist. Soc. Ser. B, 19:1 (1957), 144–148 | MR
[11] Sethuraman J., Sukhatme B.V., “Joint asymptotic distribution of $U$-statistics and order statistics”, Sankhya: Indian J. Statist., 21:3/4 (1959), 289–298 | MR | Zbl
[12] Anderson C.W., Turkman K.F., “The joint limiting distribution of sums and maxima of stationary sequences”, J. Appl. Probab., 28:1 (1991), 33–44 | DOI | MR | Zbl
[13] Weiss L., “The limiting joint distribution of the largest and smallest sample spacings”, Ann. Math. Statist., 30:2 (1959), 590–593 | DOI | MR | Zbl
[14] Savelov M.P., “Predelnye sovmestnye raspredeleniya statistik chetyrekh kriteriev paketa NIST”, Diskretn. matem., 33:2 (2021), 141–154 | DOI
[15] Ghosh J.K., “A new proof of the Bahadur representation of quantiles and an application”, Ann. Math. Statist., 42:6 (1971), 1957–1961 | DOI | MR | Zbl
[16] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003