Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 9-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1, X_2, \ldots, X_n$ be independent identically distributed random vectors. Consider a vector $V(X_1, X_2, \ldots, X_n)$ whose each component is either a $U$-statistic or an $M$-estimator. Sufficient conditions for asymptotic normality of the vector $V(X_1, X_2, \ldots, X_n)$ are obtained. In the case when $X_1, X_2, \ldots$ are one-dimensional sufficient conditions for asymptotic normality are obtained for a vector, each component of which is either a $U$-statistic, or an $M$-estimator, or a sample quantile.
@article{VMUMM_2023_6_a1,
     author = {M. P. Savelov},
     title = {Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--16},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 9
EP  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/
LA  - ru
ID  - VMUMM_2023_6_a1
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 9-16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/
%G ru
%F VMUMM_2023_6_a1
M. P. Savelov. Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 9-16. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/