Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 9-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1, X_2, \ldots, X_n$ be independent identically distributed random vectors. Consider a vector $V(X_1, X_2, \ldots, X_n)$ whose each component is either a $U$-statistic or an $M$-estimator. Sufficient conditions for asymptotic normality of the vector $V(X_1, X_2, \ldots, X_n)$ are obtained. In the case when $X_1, X_2, \ldots$ are one-dimensional sufficient conditions for asymptotic normality are obtained for a vector, each component of which is either a $U$-statistic, or an $M$-estimator, or a sample quantile.
@article{VMUMM_2023_6_a1,
author = {M. P. Savelov},
title = {Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--16},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/}
}
TY - JOUR AU - M. P. Savelov TI - Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 9 EP - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/ LA - ru ID - VMUMM_2023_6_a1 ER -
M. P. Savelov. Limit joint distribution of $U$-statistics, $M$-estimates, and sample quantiles. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2023), pp. 9-16. http://geodesic.mathdoc.fr/item/VMUMM_2023_6_a1/