Transfer function calculation for the Poincar\'e--Steklov operator in the case of a functionally gradient elastic strip
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 52-60

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem is considered in a functionally graded elastic strip. A three-term asymptotic expansion of a transfer function is obtained for the Poincaré–Steklov operator that maps normal stresses to normal displacements on a part of a strip boundary. Padé approximations are determined for the obtained asymptotic series. An approach to computing the transfer function using the asymptotic series and the Padé approximations is proposed, which reduces computational costs.
@article{VMUMM_2023_5_a7,
     author = {A. A. Bobylev},
     title = {Transfer function calculation for the {Poincar\'e--Steklov} operator in the case of a functionally gradient elastic strip},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--60},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/}
}
TY  - JOUR
AU  - A. A. Bobylev
TI  - Transfer function calculation for the Poincar\'e--Steklov operator in the case of a functionally gradient elastic strip
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 52
EP  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/
LA  - ru
ID  - VMUMM_2023_5_a7
ER  - 
%0 Journal Article
%A A. A. Bobylev
%T Transfer function calculation for the Poincar\'e--Steklov operator in the case of a functionally gradient elastic strip
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 52-60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/
%G ru
%F VMUMM_2023_5_a7
A. A. Bobylev. Transfer function calculation for the Poincar\'e--Steklov operator in the case of a functionally gradient elastic strip. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 52-60. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/