@article{VMUMM_2023_5_a7,
author = {A. A. Bobylev},
title = {Transfer function calculation for the {Poincar\'e{\textendash}Steklov} operator in the case of a functionally gradient elastic strip},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--60},
year = {2023},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/}
}
TY - JOUR AU - A. A. Bobylev TI - Transfer function calculation for the Poincaré–Steklov operator in the case of a functionally gradient elastic strip JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 52 EP - 60 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/ LA - ru ID - VMUMM_2023_5_a7 ER -
%0 Journal Article %A A. A. Bobylev %T Transfer function calculation for the Poincaré–Steklov operator in the case of a functionally gradient elastic strip %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 52-60 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/ %G ru %F VMUMM_2023_5_a7
A. A. Bobylev. Transfer function calculation for the Poincaré–Steklov operator in the case of a functionally gradient elastic strip. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 52-60. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a7/
[1] Saleh B., Jiang J., Fathi R., Al-hababi T., Xu Q., Wang L., Song Dan., Ma A., “30 Years of functionally graded materials: An overview of manufacturing methods. Applications and Future Challenges”, Composites. Part B: Engineering, 201 (2020), 108376 | DOI
[2] Aleksandrov V.M., Mkhitaryan S.M., Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1963
[3] Barber J.R., Contact Mechanics, Springer, Cham, 2018 | MR | Zbl
[4] Goryacheva I.G., Mekhanika friktsionnogo vzaimodeistviya, Nauka, M., 2001
[5] Torskaya E.V., Modeli friktsionnogo vzaimodeistviya tel s pokrytiyami, In-t kompyuternykh issledovanii, M.–Izhevsk, 2020
[6] Bobylev A.A., “Algoritm resheniya zadach diskretnogo kontakta dlya uprugoi polosy”, Prikl. matem. i mekhan, 86:3 (2022), 404–423 | Zbl
[7] Bobylev A.A., Belashova I.S., “Chislennoe reshenie ploskikh kontaktnykh zadach dlya uprugikh tel s funktsionalno-gradientnymi pokrytiyami”, Nelineinyi mir, 11:10 (2013), 689–695
[8] Vatulyan A.O., Plotnikov D.K., “K issledovaniyu kontaktnoi zadachi dlya neodnorodnoi uprugoi polosy”, Prikl. matem. i mekhan, 85:3 (2021), 283–293
[9] Vorovich I.I., Aleksandrov V.M., Babeshko V.A., Neklassicheskie smeshannye zadachi teorii uprugosti, Nauka, M., 1974
[10] Nikishin V.S., “Staticheskie kontaktnye zadachi dlya mnogosloinykh uprugikh tel”, Mekhanika kontaktnykh vzaimodeistvii, FIZMATLIT, M., 2001, 212–233
[11] Aizikovich S.M., Aleksandrov V.M., Belokon A.V., Krenev L.I., Trubchik I.S., Kontaktnye zadachi teorii uprugosti dlya neodnorodnykh sred, FIZMATLIT, M., 2006
[12] Babeshko V.A., Glushkov E.V., Glushkova N.V., “Metody postroeniya matrits Grina dlya stratifitsirovannogo uprugogo poluprostranstva”, Zhurn. vychisl. matem. i matem. fiz, 27:1 (1987), 93–101 | MR | Zbl
[13] Bobylev A.A., “Chislennoe postroenie transformanty yadra integralnogo predstavleniya operatora Puankare–Steklova dlya uprugoi polosy”, Differents. uravneniya, 59:1 (2023), 115–129 | MR | Zbl
[14] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | Zbl
[15] Beiker Dzh., ml., Greivs-Morris P., Approksimatsiya Pade, Mir, M., 1986 | MR