Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 40-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider new holonomic tensor measures of strain and stresses and build nonlinear elasticity models for which the problems of stretching a thin wide plate and uniaxial stretching a rod from incompressible materials are solved. These models are congruent with classical ones when deformation is small, and they demonstrate essentially various properties at large deformations.
@article{VMUMM_2023_5_a5,
     author = {E. S. Klimov and G. L. Brovko},
     title = {Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--47},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a5/}
}
TY  - JOUR
AU  - E. S. Klimov
AU  - G. L. Brovko
TI  - Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 40
EP  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a5/
LA  - ru
ID  - VMUMM_2023_5_a5
ER  - 
%0 Journal Article
%A E. S. Klimov
%A G. L. Brovko
%T Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 40-47
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a5/
%G ru
%F VMUMM_2023_5_a5
E. S. Klimov; G. L. Brovko. Behavior singularities of the simplest nonlinear elasticity models constructed on the basis of new holonomic tensor measures. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 40-47. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a5/

[1] Brovko G.L., Opredelyayuschie sootnosheniya mekhaniki sploshnoi sredy, Nauka, M., 2017

[2] Chernykh K.F., Nelineinaya teoriya uprugosti v mashinostroitelnykh raschetakh, Mashinostroenie, L., 1986

[3] Dimitrienko Yu.I., Universalnye zakony mekhaniki i elektrodinamiki sploshnykh sred, v. 2, Izd-vo MGTU im. N.E. Baumana, M., 2011

[4] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975

[5] Pobedrya B.E., Georgievskii D.V., Osnovy mekhaniki sploshnoi sredy, Kurs lektsii, Fizmatlit, M., 2006

[6] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980

[7] Brovko G.L., Osnovy mekhaniki sploshnoi sredy, v. 1, Izd-vo Popechitelskogo soveta mekh.-mat. f-ta MGU imeni M.V. Lomonosova, M., 2011; т. 2, 2013 | Zbl

[8] Brovko G.L., Bykov D.L., Vasin R.A., Georgievskii D.V., Kiiko I.A., Molodtsov I.N., Pobedrya B.E., “Nauchnoe nasledie A.A. Ilyushina i razvitie ego idei v mekhanike”, Izv. RAN. Mekhan. tverdogo tela, 2011, no. 1, 5–18

[9] Brovko G.L., “Ob odnom semeistve golonomnykh tenzornykh mer deformatsii i napryazhenii”, Vestn. Mosk. un-ta. Matem. Mekhan, 1992, no. 4, 86–91 | MR | Zbl

[10] Brovko G.L., “Obobschennaya teoriya tenzornykh mer deformatsii i napryazhenii v klassicheskoi mekhanike sploshnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan, 2018, no. 5, 46–57 | Zbl