Spectrum of the Schrödinger operator in an elliptical ring cover
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 22-32
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The stationary Schrödinger equation is studied in a domain bounded by two confocal ellipses and in its coverings. The order of dependence of the Laplace operator eigenvalues on sufficiently small distance between the foci is obtained. Coefficients of the power series expansion of said eigenvalues are calculated up to and including the square of half the focal distance.
@article{VMUMM_2023_5_a3,
     author = {M. A. Nikulin},
     title = {Spectrum of the {Schr\"odinger} operator in an elliptical ring cover},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--32},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a3/}
}
TY  - JOUR
AU  - M. A. Nikulin
TI  - Spectrum of the Schrödinger operator in an elliptical ring cover
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 22
EP  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a3/
LA  - ru
ID  - VMUMM_2023_5_a3
ER  - 
%0 Journal Article
%A M. A. Nikulin
%T Spectrum of the Schrödinger operator in an elliptical ring cover
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 22-32
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a3/
%G ru
%F VMUMM_2023_5_a3
M. A. Nikulin. Spectrum of the Schrödinger operator in an elliptical ring cover. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 22-32. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a3/

[1] Fokicheva V.V., “Opisanie osobennostei sistemy bilyarda v oblastyakh, ogranichennykh sofokusnymi ellipsami ili giperbolami”, Vestn. Mosk. un-ta. Matem. Mekhan, 2014, no. 4, 18–27 | MR | Zbl

[2] Fokicheva V.V., “Topologicheskaya klassifikatsiya billiardov v lokalno ploskikh oblastyakh, ogranichennykh dugami sofokusnykh kvadrik”, Matem. sb, 206:10 (2015), 127–176 | DOI | MR | Zbl

[3] Vedyushkina (Fokicheva) V.V., Fomenko A.T., “Integriruemye geodezicheskie potoki na orientiruemykh dvumernykh poverkhnostyakh i topologicheskie billiardy”, Izv. RAN. Ser. matem, 83:6 (2019), 63–103 | DOI | MR | Zbl

[4] Clebsch R.F.A., Theorie der Elasticität fester Körper, B.G. Teubner, Leipzig, 1862

[5] Strett Dzh.V. (lord Relei), Teoriya zvuka, v. 1, GITTL, M., 1955

[6] Kuttler J. R., Sigillito V.G., “Eigenvalues of the Laplacian in two dimensions”, SIAM Review, 26:2 (1984), 163–193 | DOI | MR | Zbl

[7] Abramowitz M., Stegun I.A. (), Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Reports, 55, 10th print, 1972 with corrections, U.S. Dept. of Commerce National Bureau of Standards, 1972, 721–750 | MR

[8] McMahon J., “On the roots of the Bessel and certain related functions”, Ann. Math, 9:1/6 (1894), 23–30 | DOI | MR

[9] McLachlan N.W., Theory and Application of Mathieu Functions, Oxford University Press, Oxford, 1951 | MR

[10] F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier et.al. (eds.), NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/28

[11] Meixner J., Schäfke F.W., Mathieusche Funktionen und Sphäroidfunktionen, Springer-Verlag, Berlin, Germany, 1954