Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Examples of two linear homogeneous differential equations of the third order are constructed, the spectra of the upper strong exponents of oscillation of signs, zeros and roots of one of which coincide with the set of rational numbers of the segment $[0,1]$, and the other with the set of irrational numbers of the segment $[0,1]$ augmented with the number zero.
			
            
            
            
          
        
      @article{VMUMM_2023_5_a2,
     author = {A. Kh. Stash and A. E. Artisevich},
     title = {Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/}
}
                      
                      
                    TY - JOUR AU - A. Kh. Stash AU - A. E. Artisevich TI - Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 16 EP - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/ LA - ru ID - VMUMM_2023_5_a2 ER -
%0 Journal Article %A A. Kh. Stash %A A. E. Artisevich %T Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 16-22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/ %G ru %F VMUMM_2023_5_a2
A. Kh. Stash; A. E. Artisevich. Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/
