Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Examples of two linear homogeneous differential equations of the third order are constructed, the spectra of the upper strong exponents of oscillation of signs, zeros and roots of one of which coincide with the set of rational numbers of the segment $[0,1]$, and the other with the set of irrational numbers of the segment $[0,1]$ augmented with the number zero.
@article{VMUMM_2023_5_a2,
     author = {A. Kh. Stash and A. E. Artisevich},
     title = {Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/}
}
TY  - JOUR
AU  - A. Kh. Stash
AU  - A. E. Artisevich
TI  - Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 16
EP  - 22
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/
LA  - ru
ID  - VMUMM_2023_5_a2
ER  - 
%0 Journal Article
%A A. Kh. Stash
%A A. E. Artisevich
%T Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 16-22
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/
%G ru
%F VMUMM_2023_5_a2
A. Kh. Stash; A. E. Artisevich. Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/

[1] Sergeev I.N., “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Tr. seminara im. I. G. Petrovskogo, 25, 2006, 249–294 | Zbl

[2] Sergeev I.N., “Opredelenie polnykh chastot reshenii lineinogo uravneniya”, Differents. uravneniya, 44:11 (2008), 1577

[3] Sergeev I.N., “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Seriya matem, 76:1 (2012), 149–172 | DOI | MR | Zbl

[4] Stash A.Kh., “O suschestvennykh znacheniyakh kharakteristik koleblemosti reshenii lineinykh differentsialnykh uravnenii tretego poryadka”, Vestn. Adyg. gos. un-ta. Ser. Estestv.-matem. i tekhn. nauki, 2 (119) (2013), 9–22

[5] Stash A.Kh., “O suschestvovanii lineinogo differentsialnogo uravneniya tretego poryadka s kontinualnymi spektrami polnoi i vektornoi chastot”, Vestn. Adyg. gos. un-ta. Ser. Estestv.-matem. i tekhn. nauki, 3 (122) (2013), 9–17

[6] Voidelevich A.S., “Suschestvovanie beskonechnykh vsyudu razryvnykh spektrov verkhnikh kharakteristicheskikh chastot nulei i znakov lineinykh differentsialnykh uravnenii”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2015, no. 3, 17–23

[7] Filippov A.F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004

[8] Barabanov E.A., Voidelevich A.S., “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. II”, Differents. uravneniya, 52:12 (2016), 1595–1609 | DOI | Zbl