Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of two linear homogeneous differential equations of the third order are constructed, the spectra of the upper strong exponents of oscillation of signs, zeros and roots of one of which coincide with the set of rational numbers of the segment $[0,1]$, and the other with the set of irrational numbers of the segment $[0,1]$ augmented with the number zero.
@article{VMUMM_2023_5_a2,
     author = {A. Kh. Stash and A. E. Artisevich},
     title = {Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/}
}
TY  - JOUR
AU  - A. Kh. Stash
AU  - A. E. Artisevich
TI  - Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 16
EP  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/
LA  - ru
ID  - VMUMM_2023_5_a2
ER  - 
%0 Journal Article
%A A. Kh. Stash
%A A. E. Artisevich
%T Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 16-22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/
%G ru
%F VMUMM_2023_5_a2
A. Kh. Stash; A. E. Artisevich. Existence of infinite everywhere discontinuous spectra of upper indicators in changes of signs, zeros and roots for third order differential equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a2/