Symmetry verification of innovation distributions in autoregressive schemes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 10-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a stationary linear $AR(p)$ model with zero mean. The autoregression parameters as well as the distribution function (d.f.) $G(x)$ of innovations are unknown. We test symmetry of innovations with respect to zero in two situations. In the first case the observations are a sample from a stationary solution of $AR(p)$. We estimate parameters, find residuals. Based on them we construct a kind of emperical d.f. and the omega-square type test statistic. Its asymptotic d.f. under the hypothesis and the local alternatives are found. In the second situation the observations subject to gross errors (outliers). For testing the symmetry of innovations again we construct the Pearson's type statistic and find its asymptotic d.f. under the hypothesis and the local alternatives. We establish the asymptotic robustness of Pearson's test as well.
@article{VMUMM_2023_5_a1,
     author = {M. V. Boldin and A. R. Shabakaeva},
     title = {Symmetry verification of innovation distributions in autoregressive schemes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--16},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a1/}
}
TY  - JOUR
AU  - M. V. Boldin
AU  - A. R. Shabakaeva
TI  - Symmetry verification of innovation distributions in autoregressive schemes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 10
EP  - 16
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a1/
LA  - ru
ID  - VMUMM_2023_5_a1
ER  - 
%0 Journal Article
%A M. V. Boldin
%A A. R. Shabakaeva
%T Symmetry verification of innovation distributions in autoregressive schemes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 10-16
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a1/
%G ru
%F VMUMM_2023_5_a1
M. V. Boldin; A. R. Shabakaeva. Symmetry verification of innovation distributions in autoregressive schemes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 10-16. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a1/

[1] Koul H.L., Weighted empiricals and linear models, Michigan State University, Hayward, 1992 | MR

[2] Boldin M.V., Simonova G.I., Tyurin Yu.N., Znakovyi statisticheskii analiz lineinykh modelei, Nauka, M., 1997

[3] Koul H.L., “Asymptotics of some estimators and sequential residual empiricals in nonlinear time series”, Ann. Statist, 24 (1996), 380–404 | MR | Zbl

[4] Boldin M.V., “On empirical processes in heteroscedastic time series and their use for hypothesis testing and estimation”, Math. Methods Statist, 9:1 (2000), 65–89 | MR | Zbl

[5] Anderson T.W., The statistical analysis of time series, John Wiley and Sons, N.Y., 1971 | MR | Zbl

[6] Martin R.D., Yohai V.J., “Influence functionals for time series”, Ann. Statist, 14 (1986), 781–818 | MR | Zbl

[7] Orlov A.I., “O proverke simmetriii raspredeleniya”, Teor. veroyatn. i ee primen, XVII:2 (1972), 372–377 | Zbl

[8] Boldin M.V., “On the asymptotic power of test of fit under local alternatives in autoregression”, Math. Methods Statist, 28:2 (2019), 144–154 | DOI | MR | Zbl

[9] Boldin M.V., “Otsenka raspredeleniya vozmuschenii v skheme avtoregressii”, Teor. veroyatn. i ee primen., 27:4 (1982), 905–910 | MR

[10] Martynov G.V., Kriterii omega-kvadrat, Nauka, M., 1978 | MR

[11] Boldin M.V., “On the power of Pearson's test under local alternatives in autoregression with outliers”, Math. Methods Statist, 28:1 (2019), 57–65 | DOI | MR | Zbl