Modeling of degenerate peculiarities of integrable billiard systems by billiard books
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Examples of degenerate (non Morse type) multi-saddle singularities (atoms) of complexity 1 and multiplicity 3 are realized by integrable billiard books.
@article{VMUMM_2023_5_a0,
     author = {A. A. Kuznetsova},
     title = {Modeling of degenerate peculiarities of integrable billiard systems by billiard books},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--10},
     year = {2023},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/}
}
TY  - JOUR
AU  - A. A. Kuznetsova
TI  - Modeling of degenerate peculiarities of integrable billiard systems by billiard books
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 3
EP  - 10
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/
LA  - ru
ID  - VMUMM_2023_5_a0
ER  - 
%0 Journal Article
%A A. A. Kuznetsova
%T Modeling of degenerate peculiarities of integrable billiard systems by billiard books
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 3-10
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/
%G ru
%F VMUMM_2023_5_a0
A. A. Kuznetsova. Modeling of degenerate peculiarities of integrable billiard systems by billiard books. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/

[1] Vedyushkina V.V., Fomenko A.T., Kharcheva I.S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | DOI | MR | Zbl

[2] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb, 209:12 (2018), 17–56 | DOI | MR | Zbl

[3] Fomenko A.T., Vedyushkina V.V., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. un-ta. Matem. Mekhan, 2019, no. 3, 15–25 | Zbl

[4] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem, 50:6 (1986), 1276–1307 | MR | Zbl

[6] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (265) (1989), 145–173 | MR

[7] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb, 212:8 (2021), 89–150 | DOI | MR | Zbl

[8] Vedyushkina V.V., Kibkalo V.A., Fomenko A.T., “Topologicheskoe modelirovanie integriruemykh sistem billiardami: realizatsiya chislovykh invariantov”, Dokl. RAN. Matem. Inform. Protsessy upr, 493 (2020), 9–12 | DOI | MR | Zbl

[9] Vedyushkina V.V., Kibkalo V.A., “Realization of numerisal invariant of the Siefert bundle of integrable systems by billiards”, Moscow Univ. Math. Bull, 75:4 (2020), 161–168 | DOI | MR | Zbl

[10] Vedyushkina V.V., “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow Univ. Math. Bull, 76:2 (2021), 60–64 | DOI | MR | Zbl

[11] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl

[12] Vedyushkina V.V., “Topologicheskii tip izoenergeticheskikh poverkhnostei billiardnykh knizhek”, Matem. sb, 212:12 (2021), 3–19 | DOI | MR

[13] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem, 54:3 (1990), 546–575 | Zbl

[14] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999

[15] Bolsinov A.V., Rikhter P., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. cb, 191:2 (2000), 3–42 | DOI | Zbl

[16] Kibkalo V.A. , Fomenko A.T. , Kharcheva I.S., “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc, 82 (2021), 37–64 | DOI | MR | Zbl

[17] Nikonov I.M., “Opisanie vyrozhdennykh dvumernykh osobennostei s odnoi kriticheskoi tochkoi”, Vestn. Mosk. un-ta. Matem. Mekhan, 2019, no. 3, 5–15 | Zbl

[18] Fokicheva V.V., “Description of singularities for system billiard in an ellipse”, Moscow Univ. Math. Bull, 67:5–6 (2012), 217–220 | DOI | MR | Zbl

[19] Fokicheva V.V., “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull, 69:4 (2014), 148–158 | DOI | MR | Zbl

[20] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn, 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[21] Nikolaenko S.S., “Topologicheskaya klassifikatsiya gamiltonovykh sistem na dvumernykh nekompaktnykh mnogoobraziyakh”, Matem. sb, 211:8 (2020), 68–101 | DOI | MR | Zbl

[22] Oshemkov A.A., “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math, 205 (1995), 119–127 | MR