@article{VMUMM_2023_5_a0,
author = {A. A. Kuznetsova},
title = {Modeling of degenerate peculiarities of integrable billiard systems by billiard books},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--10},
year = {2023},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/}
}
TY - JOUR AU - A. A. Kuznetsova TI - Modeling of degenerate peculiarities of integrable billiard systems by billiard books JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 3 EP - 10 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/ LA - ru ID - VMUMM_2023_5_a0 ER -
A. A. Kuznetsova. Modeling of degenerate peculiarities of integrable billiard systems by billiard books. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/VMUMM_2023_5_a0/
[1] Vedyushkina V.V., Fomenko A.T., Kharcheva I.S., “Modelirovanie nevyrozhdennykh bifurkatsii zamykanii reshenii integriruemykh sistem s dvumya stepenyami svobody integriruemymi topologicheskimi billiardami”, Dokl. RAN, 479:6 (2018), 607–610 | DOI | MR | Zbl
[2] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki modeliruyut vse trekhmernye bifurkatsii integriruemykh gamiltonovykh sistem”, Matem. sb, 209:12 (2018), 17–56 | DOI | MR | Zbl
[3] Fomenko A.T., Vedyushkina V.V., “Bilyardy i integriruemost v geometrii i fizike. Novyi vzglyad i novye vozmozhnosti”, Vestn. Mosk. un-ta. Matem. Mekhan, 2019, no. 3, 15–25 | Zbl
[4] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[5] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem, 50:6 (1986), 1276–1307 | MR | Zbl
[6] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1 (265) (1989), 145–173 | MR
[7] Vedyushkina V.V., Kharcheva I.S., “Billiardnye knizhki realizuyut vse bazy sloenii Liuvillya integriruemykh gamiltonovykh sistem”, Matem. sb, 212:8 (2021), 89–150 | DOI | MR | Zbl
[8] Vedyushkina V.V., Kibkalo V.A., Fomenko A.T., “Topologicheskoe modelirovanie integriruemykh sistem billiardami: realizatsiya chislovykh invariantov”, Dokl. RAN. Matem. Inform. Protsessy upr, 493 (2020), 9–12 | DOI | MR | Zbl
[9] Vedyushkina V.V., Kibkalo V.A., “Realization of numerisal invariant of the Siefert bundle of integrable systems by billiards”, Moscow Univ. Math. Bull, 75:4 (2020), 161–168 | DOI | MR | Zbl
[10] Vedyushkina V.V., “Local modeling of Liouville foliations by billiards: implementation of edge invariants”, Moscow Univ. Math. Bull, 76:2 (2021), 60–64 | DOI | MR | Zbl
[11] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl
[12] Vedyushkina V.V., “Topologicheskii tip izoenergeticheskikh poverkhnostei billiardnykh knizhek”, Matem. sb, 212:12 (2021), 3–19 | DOI | MR
[13] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem, 54:3 (1990), 546–575 | Zbl
[14] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 1999
[15] Bolsinov A.V., Rikhter P., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. cb, 191:2 (2000), 3–42 | DOI | Zbl
[16] Kibkalo V.A. , Fomenko A.T. , Kharcheva I.S., “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc, 82 (2021), 37–64 | DOI | MR | Zbl
[17] Nikonov I.M., “Opisanie vyrozhdennykh dvumernykh osobennostei s odnoi kriticheskoi tochkoi”, Vestn. Mosk. un-ta. Matem. Mekhan, 2019, no. 3, 5–15 | Zbl
[18] Fokicheva V.V., “Description of singularities for system billiard in an ellipse”, Moscow Univ. Math. Bull, 67:5–6 (2012), 217–220 | DOI | MR | Zbl
[19] Fokicheva V.V., “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull, 69:4 (2014), 148–158 | DOI | MR | Zbl
[20] Dragovic V., Radnovic M., “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn, 14:4–5 (2009), 479–494 | DOI | MR | Zbl
[21] Nikolaenko S.S., “Topologicheskaya klassifikatsiya gamiltonovykh sistem na dvumernykh nekompaktnykh mnogoobraziyakh”, Matem. sb, 211:8 (2020), 68–101 | DOI | MR | Zbl
[22] Oshemkov A.A., “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math, 205 (1995), 119–127 | MR