Reconstruction of the Schr\"odinger operator with a singular potential on half-line by its prescribed essential spectrum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 57-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Singular Schrodinger operators on $L^2([0,+\infty))$ with the potential of the form $\sum_{k=1}^{+\infty}a_k\delta_{x_k}$, where $x_k~{>}~0$ and $a_k~{\in}~\mathbb{R}$, are considered. It is constructively proved that every closed semibounded set $S\subset\mathbb{R}$ can be the essential spectrum of such operator.
@article{VMUMM_2023_4_a9,
author = {G. A. Agafonkin},
title = {Reconstruction of the {Schr\"odinger} operator with a singular potential on half-line by its prescribed essential spectrum},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--60},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a9/}
}
TY - JOUR AU - G. A. Agafonkin TI - Reconstruction of the Schr\"odinger operator with a singular potential on half-line by its prescribed essential spectrum JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 57 EP - 60 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a9/ LA - ru ID - VMUMM_2023_4_a9 ER -
%0 Journal Article %A G. A. Agafonkin %T Reconstruction of the Schr\"odinger operator with a singular potential on half-line by its prescribed essential spectrum %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 57-60 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a9/ %G ru %F VMUMM_2023_4_a9
G. A. Agafonkin. Reconstruction of the Schr\"odinger operator with a singular potential on half-line by its prescribed essential spectrum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 57-60. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a9/