On the moments of branching random walk in a random medium with a Gumbelian potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

A time-continuous branching random walk over a multidimensional lattice in a random medium is considered. Underlying random walk is considered to be simple and symmetric. The random medium at each point of the lattice is determined by non-negative, independent, and equally distributed random intensities of splitting and death of particles. It is assumed that the difference in the intensities of splitting and death of particles has an asymptotically Gumbelian distribution. The limiting behavior of the moments averaged over the medium is obtained.
@article{VMUMM_2023_4_a7,
     author = {V.A. Kutsenko},
     title = {On the moments of branching random walk in a random medium with a {Gumbelian} potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/}
}
TY  - JOUR
AU  - V.A. Kutsenko
TI  - On the moments of branching random walk in a random medium with a Gumbelian potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 49
EP  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/
LA  - ru
ID  - VMUMM_2023_4_a7
ER  - 
%0 Journal Article
%A V.A. Kutsenko
%T On the moments of branching random walk in a random medium with a Gumbelian potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 49-53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/
%G ru
%F VMUMM_2023_4_a7
V.A. Kutsenko. On the moments of branching random walk in a random medium with a Gumbelian potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/