On the moments of branching random walk in a random medium with a Gumbelian potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 49-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A time-continuous branching random walk over a multidimensional lattice in a random medium is considered. Underlying random walk is considered to be simple and symmetric. The random medium at each point of the lattice is determined by non-negative, independent, and equally distributed random intensities of splitting and death of particles. It is assumed that the difference in the intensities of splitting and death of particles has an asymptotically Gumbelian distribution. The limiting behavior of the moments averaged over the medium is obtained.
@article{VMUMM_2023_4_a7,
     author = {V.A. Kutsenko},
     title = {On the moments of branching random walk in a random medium with a {Gumbelian} potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     year = {2023},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/}
}
TY  - JOUR
AU  - V.A. Kutsenko
TI  - On the moments of branching random walk in a random medium with a Gumbelian potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 49
EP  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/
LA  - ru
ID  - VMUMM_2023_4_a7
ER  - 
%0 Journal Article
%A V.A. Kutsenko
%T On the moments of branching random walk in a random medium with a Gumbelian potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 49-53
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/
%G ru
%F VMUMM_2023_4_a7
V.A. Kutsenko. On the moments of branching random walk in a random medium with a Gumbelian potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a7/

[1] Zeldovich Ya.B., Molchanov S.A., Ruzmaikin A.A., Sokolov D.D., “Peremezhaemost passivnykh polei v sluchainykh sredakh”, Zhurn. eksperiment. i teor. fiz., 89:6 (1985), 2061–2072

[2] Gärtner J., Molchanov S., “Parabolic problems for the Anderson model”, Communs Math. Phys., 132:3 (1990), 613–655 | DOI | MR

[3] Albeverio S.A., Bogachev L.V., Molchanov S.A., Yarovaya E.B., “Annealed moment Lyapunov exponents for a branching random walk in a homogeneous random branching environment”, Markov Processes Relat. Fields, 6 (2000), 473–516 | MR | Zbl

[4] Kutsenko V.A., Sokolov D.D., Yarovaya E.B., “Neustoichivosti v sluchainykh sredakh i rezhimy s obostreniem”, Zhurn. eksperiment. i teor. fiz., 163:4 (2023), 561–573

[5] Yarovaya E., “Symmetric branching walks in homogeneous and non homogeneous random environments”, Communs Stat. Simulation and Computation, 41:7 (2012), 1232–1249 | DOI | MR | Zbl

[6] König W., Gün O., Sekulović O., “Moment asymptotics for branching random walks in random environment”, Electron. J. Probab., 18 (2013), 1–18 | DOI | MR | Zbl

[7] Butler R.W., Saddlepoint approximations with applications, Cambridge University Press, Cambridge, 2007 | MR | Zbl