Jordan–Kronecker invariants of singular pencils for six-dimensional real nilpotent Lie algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 46-49
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we calculate the Jordan–Kronecker invariants of singular pencils for six-dimensional nilpotent Lie algebras.
@article{VMUMM_2023_4_a6,
author = {F. I. Lobzin},
title = {Jordan{\textendash}Kronecker invariants of singular pencils for six-dimensional real nilpotent {Lie} algebras},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--49},
year = {2023},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a6/}
}
TY - JOUR AU - F. I. Lobzin TI - Jordan–Kronecker invariants of singular pencils for six-dimensional real nilpotent Lie algebras JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 46 EP - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a6/ LA - ru ID - VMUMM_2023_4_a6 ER -
F. I. Lobzin. Jordan–Kronecker invariants of singular pencils for six-dimensional real nilpotent Lie algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 46-49. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a6/
[1] Bolsinov A.V., Zhang P., “Jordan–Kronecker invariants of finite–dimensional Lie algebras”, Transform. Groups, 21 (2016), 51–86 | DOI | MR | Zbl
[2] Groznova A.Yu., “Invarianty Zhordana–Kronekera dlya algebr Li malykh razmernostei”, Fund. i prikl. matem., 23:4 (2021), 73–86 | MR
[3] Korotkevich A.A., “Integriruemye gamiltonovy sistemy na algebrakh Li maloi razmernosti”, Matem. sb., 200:12 (2009), 3–40 | DOI | MR | Zbl