Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 30-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow of thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is a stable node or a degenerated stable node or a stable spiral point. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.
@article{VMUMM_2023_4_a4,
     author = {A. V. Khokhlov},
     title = {Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--39},
     year = {2023},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/}
}
TY  - JOUR
AU  - A. V. Khokhlov
TI  - Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 30
EP  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/
LA  - ru
ID  - VMUMM_2023_4_a4
ER  - 
%0 Journal Article
%A A. V. Khokhlov
%T Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 30-39
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/
%G ru
%F VMUMM_2023_4_a4
A. V. Khokhlov. Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 30-39. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/

[1] Stolin A.M., Khokhlov A.V., “Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis”, Moscow Univ. Mech. Bull, 77:5 (2022), 127–135 | DOI | Zbl

[2] Bingham E.C., Fluidity and Plasticity, N.Y., 1922

[3] Reiner M., “Rheology”, Encyclopedia of Physics, v. 6, Springer, Berlin–Heidelberg, 1958, 434–550

[4] Rebinder P.A., Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya. Izbrannye trudy, Nauka, M., 1978

[5] Coleman B.D., Makrovitz A., Noll W., Viscometric Flows of non-Newtonian Fluids. Theory and Experiment, Springer, Berlin–Heidelberg–New York, 1966 | MR

[6] Frenkel Ya.I., Kineticheskaya teoriya zhidkostei, Nauka, L., 1975

[7] Vinogradov G.V., Malkin A.Ya., Reologiya polimerov, Khimiya, M., 1977

[8] Bibik E.E., Reologiya dispersnykh sistem, Izd-vo Leningrad. un-ta, L., 1981

[9] Bartenev G.M., Zelenev Yu.V., Fizika i mekhanika polimerov, Vysshaya shkola, M., 1983

[10] Larson R.G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988

[11] Urev N.B., Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov, M., 1988

[12] Leonov A.I., Prokunin A.N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994

[13] Macosko C., Rheology: Principles, Measurements and Applications, VCH, N.Y., 1994

[14] Schramm G., A Practical Approach to Rheology and Rheometry, Gebrueder Haake GmbH, Karlsruhe, 1994

[15] Rohn C.L., Analytical Polymer Rheology, Hanser Publishers, Munich, 1995

[16] Larson R.G., Structure and Rheology of Complex Fluids, Oxford Press, N.Y., 1999

[17] Gupta R.K., Polymer and Composite Rheology, Marcel Dekker, N.Y., 2000

[18] Tanner R.I., Engineering Rheology, Oxford University Press, Oxford, 2000

[19] Malkin A.Y., Isayev A.I., Rheology: Conceptions, Methods, Applications, 2nd ed., ChemTec Publishing, Toronto, 2012

[20] Vlachopoulos J., Polychronopoulos N., “Basic Concepts in Polymer Melt Rheology and Their Importance in Processing”, Applied Polymer Rheology: Polymeric Fluids with Industrial Applications, First ed., ed. M. Kontopoulou, John Wiley and Sons, Inc, 2012 | DOI

[21] Kirsanov E.A., Matveenko V.N., Nenyutonovskoe povedenie strukturirovannykh sistem, Tekhnosfera, M., 2016

[22] Stolin A.M., Malkin A.Ya., Merzhanov A.G., “Neizotermicheskie protsessy i metody issledovaniya v khimii i mekhanike polimerov”, Uspekhi khimii, 48:8 (1979), 1492–1517

[23] Prokunin A.N., “O nelineinykh opredelyayuschikh sootnosheniyakh maksvellovskogo tipa dlya opisaniya dvizheniya polimernykh zhidkostei”, Prikl. matem. i mekhan, 48:6 (1984), 957–965 | MR | Zbl

[24] Leonov A.I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheology Series, 8 (1999), 519–575 | DOI

[25] Stickel J.J., Powell R.L., “Fluid mechanics and rheology of dense suspensions”, Ann. Rev. Fluid Mech, 37 (2005), 129–149 | DOI | MR | Zbl

[26] Mueller S., Llewellin E.W., Mader H.M., “The rheology of suspensions of solid particles”, Proc. Roy. Soc. A, 466:2116 (2010), 1201–1228 | DOI

[27] Malkin A.Ya., Patlazhan S.A., “Wall slip for complex liquids — Phenomenon and its causes”, Adv. Colloid and Interface Sci, 257 (2018), 42–57 | DOI

[28] Stolin A.M., Khudyaev S.I., Buchatskii L.M., “K teorii sverkhanomalii vyazkosti strukturirovannykh sistem”, Dokl. AN SSSR, 243:26 (1978), 430–433

[29] Stolin A.M., Irzhak V.I., “Strukturno-neodnorodnye rezhimy techeniya v protsesse formovaniya polimernykh volokon”, Vysokomolekul. soedineniya. B. Kratk. soobscheniya, 35:7 (1993), 902–904

[30] Belyaeva N.A., Stolin A.M., Stelmakh L.S., “Rezhimy tverdofaznoi ekstruzii vyazkouprugikh strukturirovannykh sistem”, Inzh. fiz, 2009, no. 1, 10–16

[31] Brady J.F., Morris J.F., “Microstructure of strongly sheared suspensions and its impact on rheology and diffusion”, J. Fluid Mech, 348 (1997), 103–139 | DOI | Zbl

[32] Tucker C.L., Moldenaers P., “Microstructural evolution in polymer blends”, Annu. Rev. Fluid Mech, 34 (2002), 177–210 | DOI | MR | Zbl

[33] Malkin A.Ya., Kulichikhin V.G., “Struktura i reologicheskie svoistva vysokokontsentrirovannykh emulsii. Sovremennyi vzglyad”, Uspekhi khimii, 84:8 (2015), 803–825 | DOI

[34] Padmanabhan K.A., Vasin R.A., Enikeev F.U., Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001

[35] Eglit M.E., Yakubenko A.E., Zaiko Yu.S., “Matematicheskoe modelirovanie sklonovykh potokov s uchetom nenyutonovskikh svoistv dvizhuscheisya sredy”, Tr. Matem. in-ta RAN, 300, 2018, 229–239 | DOI | MR | Zbl

[36] Khokhlov A.V., “Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions”, Moscow Univ. Mech. Bull, 71:6 (2016), 132–136 | DOI | Zbl

[37] Khokhlov A.V., “Nelineinaya model vyazkouprugoplastichnosti tipa Maksvella: modelirovanie vliyaniya temperatury na krivye deformirovaniya, relaksatsii i polzuchesti”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:1 (2017), 160–179 | DOI | Zbl

[38] Khokhlov A.V., “A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings”, Moscow Univ. Mech. Bull, 73:2 (2018), 39–42 | DOI | Zbl

[39] Khokhlov A.V., “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa Maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. nauki, 2018, no. 6, 92–112 | DOI

[40] Khokhlov A.V., “Applicability indicators and identification techniques for a nonlinear Maxwell-type elastovisco- plastic model using loading–unloading curves”, Mech. Compos. Materials, 55:2 (2019), 195–210 | DOI

[41] Khokhlov A.V., “Possibility to describe the alternating and non-monotonic time dependence of Poisson's ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model”, Russ. Metallurgy (Metally), 2019, no. 10, 956–963 | DOI

[42] Khokhlov A.V., Shaporev A.V., Stolyarov O.N., “Loading-unloading-recovery curves for polyester yarns and identification of the nonlinear Maxwell-type viscoelastoplastic model”, Mech. Compos. Materials, 59:1 (2023), 129–146 | DOI

[43] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Solids, 53:3 (2018), 307–328 | DOI

[44] Khokhlov A.V., “Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials”, Mech. Solids, 54:3 (2019), 384–399 | DOI

[45] Zhilayev A.P., Pshenichnyuk A.I., Superplasticity and grain boundaries in ultrafine-grained materials, Cambridge Int. Sci. Publ., Cambridge, 2010

[46] Ovid'ko I.A., Valiev R.Z., Zhu Y.T., “Review on superior strength and enhanced ductility of metallic nanomaterials”, Progress Materials Sci, 94 (2018), 462–540 | DOI

[47] Mikhaylovskaya A.V., Kishchik A.A., Kotov A.D., et al., “Precipitation behavior and high strain rate super- plasticity in a novel fine-grained aluminium based alloy”, Mater. Sci. Eng. A, 760 (2019), 37–46 | DOI

[48] Mochugovskiy A.G., Mosleh A.O., Kotov A.D., Khokhlov A.V., Kaplanskaya L.Y., Mikhaylovskaya A.V., “Micro- structure evolution, constitutive modelling, and superplastic forming of experimental 6XXX-type alloys processed with different thermomechanical treatments”, Materials, 16:1 (2023), 445, 18 pp. | DOI