Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow of thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is a stable node or a degenerated stable node or a stable spiral point. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.
@article{VMUMM_2023_4_a4,
author = {A. V. Khokhlov},
title = {Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {30--39},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/}
}
TY - JOUR AU - A. V. Khokhlov TI - Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 30 EP - 39 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/ LA - ru ID - VMUMM_2023_4_a4 ER -
%0 Journal Article %A A. V. Khokhlov %T Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 30-39 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/ %G ru %F VMUMM_2023_4_a4
A. V. Khokhlov. Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 30-39. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a4/