On the computation complexity of the systems of finite Abelian group elements
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 22-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The computation compelxity of the systems of the finite Abelian group elements is studied in the paper. The complexity of computation means the minimal number of group operations required to calculate elements of the system over the basis elements, all results of intermediate calculations may be used multiple times. We define the Shannon function $L(n, m)$ as the maximal complexity of $m$-elements system group, the maximum is taken over all Abelian groups of order less than $n,$ over all their bases, over all computed systems. It is stated that if $m = o(\log \log n)$ for $n \to \infty$, than the asymptotic equality $L(n,m) \sim \log_2 n$ is valid. In addition, the asymptotic of the maximal possible difference of computation complexity of the systems of a finite Abelian group elements and the computation complexity of a monomial system corresponding to the representation of these elements over basis elements is obtained under the same conditions.
			
            
            
            
          
        
      @article{VMUMM_2023_4_a3,
     author = {V. V. Kochergin},
     title = {On the computation complexity of the systems of finite {Abelian} group elements},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--29},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a3/}
}
                      
                      
                    TY - JOUR AU - V. V. Kochergin TI - On the computation complexity of the systems of finite Abelian group elements JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 22 EP - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a3/ LA - ru ID - VMUMM_2023_4_a3 ER -
V. V. Kochergin. On the computation complexity of the systems of finite Abelian group elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 22-29. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a3/
