Orthorecursive expansion with respect to modified Faber--Schauder system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 15-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider orthorecursive expansions with respect to modified Faber–Schauder System and demonstrate their uniform convergence to expanded functions in C-space and convergence in Lebesgue spaces.
@article{VMUMM_2023_4_a2,
     author = {P. S. Stepanyants and A. K. Paunov},
     title = {Orthorecursive expansion with respect to modified {Faber--Schauder} system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--22},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a2/}
}
TY  - JOUR
AU  - P. S. Stepanyants
AU  - A. K. Paunov
TI  - Orthorecursive expansion with respect to modified Faber--Schauder system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 15
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a2/
LA  - ru
ID  - VMUMM_2023_4_a2
ER  - 
%0 Journal Article
%A P. S. Stepanyants
%A A. K. Paunov
%T Orthorecursive expansion with respect to modified Faber--Schauder system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 15-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a2/
%G ru
%F VMUMM_2023_4_a2
P. S. Stepanyants; A. K. Paunov. Orthorecursive expansion with respect to modified Faber--Schauder system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 15-22. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a2/