Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 64-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a variational principle of Lagrange, the Ritz method and piecewise polynomial serendipity shape functions are used to obtain a stiffness matrix and a system of linear algebraic equations in the micropolar theory of elasticity for anisotropic, isotropic and centrally symmetric material in case of a non isothermal process.
@article{VMUMM_2023_4_a11,
     author = {A. V. Romanov},
     title = {Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {64--68},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 64
EP  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/
LA  - ru
ID  - VMUMM_2023_4_a11
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 64-68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/
%G ru
%F VMUMM_2023_4_a11
A. V. Romanov. Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 64-68. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/