Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 64-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a variational principle of Lagrange, the Ritz method and piecewise polynomial serendipity shape functions are used to obtain a stiffness matrix and a system of linear algebraic equations in the micropolar theory of elasticity for anisotropic, isotropic and centrally symmetric material in case of a non isothermal process.
@article{VMUMM_2023_4_a11,
author = {A. V. Romanov},
title = {Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {64--68},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/}
}
TY - JOUR AU - A. V. Romanov TI - Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 64 EP - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/ LA - ru ID - VMUMM_2023_4_a11 ER -
%0 Journal Article %A A. V. Romanov %T Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 64-68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/ %G ru %F VMUMM_2023_4_a11
A. V. Romanov. Lagrange variational principle in the micropolar elasticity theory for non-isothermal processes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 64-68. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a11/