Generalized Cesaro formulas and third order compatibility equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 61-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classical problem of elasticity theory concerning the conditions of compatibility deformations, which ensure the determination of a continuous field of displacements of an elastic body by the deformation field. We construct generalized Cesaro representations that allow one to define the displacement field through integro-differential operators on the components of the strain tensor deviator with an accuracy up to quadratic polynomials. It has been established that the quadratures both for the pseudovector of local rotations and for the volume change deformation are completely determined by the deformation deviator field. We present the conditions for the existence of the listed quadratures, which are written in the form of five third differential order coincidence equations with respect to the five components of the strain tensor-deviator.
@article{VMUMM_2023_4_a10,
     author = {S. A. Lur'e and P. A. Belov},
     title = {Generalized {Cesaro} formulas and third order compatibility equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--64},
     year = {2023},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a10/}
}
TY  - JOUR
AU  - S. A. Lur'e
AU  - P. A. Belov
TI  - Generalized Cesaro formulas and third order compatibility equations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 61
EP  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a10/
LA  - ru
ID  - VMUMM_2023_4_a10
ER  - 
%0 Journal Article
%A S. A. Lur'e
%A P. A. Belov
%T Generalized Cesaro formulas and third order compatibility equations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 61-64
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a10/
%G ru
%F VMUMM_2023_4_a10
S. A. Lur'e; P. A. Belov. Generalized Cesaro formulas and third order compatibility equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 61-64. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a10/

[1] Leibenzon L.S., Kurs teorii uprugosti, Nauka, M., 1947 | MR

[2] Lure A.I., Teoriya uprugosti, Nauka, M., 1970

[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975

[4] Pobedrya B.E., Sheshenin S.V., Kholmatov T., Zadacha v napryazheniyakh, FAN, Tashkent, 1988

[5] Georgievskii D.V., “Postroenie obobschennykh formul Chezaro dlya konechnykh ploskikh deformatsii”, Prikl. mekh. i tekhn. fiz, 55:3 (2014), 140–145 | MR | Zbl

[6] Georgievskii D.V., “Uravneniya sovmestnosti v sistemakh, osnovannykh na obobschennykh kinematicheskikh sootnosheniyakh Koshi”, Izv. RAN. Mekhan. tverdogo tela, 2014, no. 1, 127–132

[7] Georgievskii D.V., Pobedrya B.E., “On the compatibility equations in terms of stresses in many-dimensional elastic medium”, Russ. J. Math. Phys, 22:1 (2015), 6–8 | DOI | MR | Zbl

[8] Cesăro E., “Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche”, Rend. Accad. Napoli, 12:1 (1906), 311–321

[9] Poynting J.H., “On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening on loaded wires when twisted”, Proc. Roy. Soc. London. A, 82:557 (1909), 546–559 | DOI