Classes of linear approximations providing various types of stability or instability of differential systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 8-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Relationships (inclusions, coincidences, non-coincidences) between classes of linear approximations that provide various properties of Lyapunov, Perron, and upper-limit stability or instability (from global to particular) of the zero solution to a differential system of arbitrary order are studied. A complete set of non-coinciding stability classes is presented and some considerations are given for a similar description of instability classes.
@article{VMUMM_2023_4_a1,
     author = {I. N. Sergeev},
     title = {Classes of linear approximations providing various types of stability or instability of differential systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--15},
     year = {2023},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a1/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Classes of linear approximations providing various types of stability or instability of differential systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 8
EP  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a1/
LA  - ru
ID  - VMUMM_2023_4_a1
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Classes of linear approximations providing various types of stability or instability of differential systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 8-15
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a1/
%G ru
%F VMUMM_2023_4_a1
I. N. Sergeev. Classes of linear approximations providing various types of stability or instability of differential systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 8-15. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a1/

[1] Lyapunov A.M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950 | MR

[2] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, M., 1967 | MR

[3] Izobov N.A., Vvedenie v teoriyu pokazatelei Lyapunova, Minsk, 2006

[4] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[5] Sergeev I.N., “Ustoichivost po Perronu i ee issledovanie po pervomu priblizheniyu”, Dokl. RAN, 486:1 (2019), 20–23 | DOI | Zbl

[6] Sergeev I.N., “Lyapunovskie, perronovskie i verkhnepredelnye svoistva ustoichivosti avtonomnykh differentsialnykh sistem”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 56:2 (2020), 63–78 | Zbl

[7] Bondarev A.A., Sergeev I.N., “Primery differentsialnykh sistem s kontrastnymi sochetaniyami lyapunovskikh, perronovskikh i verkhnepredelnykh svoistv”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 506 (2022), 25–29

[8] Sergeev I.N., “Issledovanie svoistv perronovskoi i lyapunovskoi ustoichivosti po pervomu priblizheniyu”, Differents. uravneniya, 56:1 (2020), 84–93 | DOI | Zbl

[9] Sergeev I.N., “Opredelenie i nekotorye svoistva ustoichivosti po Perronu”, Differents. uravneniya, 55:5 (2019), 636–646 | DOI | Zbl

[10] Sergeev I.N., “Zavisimost i nezavisimost svoistv perronovskoi i lyapunovskoi ustoichivosti ot fazovoi oblasti sistemy”, Differents. uravneniya, 55:10 (2019), 1338–1346 | DOI | Zbl

[11] Sergeev I.N., “First approximation study of Lyapunov, Perron and upper-limit stability or instability”, Mem. Diff. Equat. and Math. Phys., 87 (2022), 165–176 | MR

[12] Millionschikov V.M., “Sistemy s integralnoi razdelennostyu vsyudu plotny v mnozhestve vsekh lineinykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 5:7 (1969), 1167–1170