Boundedness of the set of solutions to a linear homogeneous system uniform along the initial segment
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper contains definitions of some properties of solutions to linear systems of ordinary differential equations and proof of the fact that these properties are not the same for unbounded systems.
@article{VMUMM_2023_4_a0,
author = {N. L. Margolina and K. E. Shiryaev},
title = {Boundedness of the set of solutions to a linear homogeneous system uniform along the initial segment},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a0/}
}
TY - JOUR AU - N. L. Margolina AU - K. E. Shiryaev TI - Boundedness of the set of solutions to a linear homogeneous system uniform along the initial segment JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2023 SP - 3 EP - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a0/ LA - ru ID - VMUMM_2023_4_a0 ER -
%0 Journal Article %A N. L. Margolina %A K. E. Shiryaev %T Boundedness of the set of solutions to a linear homogeneous system uniform along the initial segment %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2023 %P 3-8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a0/ %G ru %F VMUMM_2023_4_a0
N. L. Margolina; K. E. Shiryaev. Boundedness of the set of solutions to a linear homogeneous system uniform along the initial segment. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2023), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2023_4_a0/