Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 62-64
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions are established to ensure the estimation, boundedness, power-law absolute integrability on the semiaxis, the tendency to zero under the tendency to infinity of the independent variable of all solutions of the linear Volterra integrodifferential equation of the first order with delay. For this purpose, a generalized Lyapunov functional is constructed. An illustrative example is presented.
@article{VMUMM_2023_3_a9,
     author = {S. Iskandarov and A. Khalilov},
     title = {Method of {Lyapunov} functionals for a first order linear {Volterra} integro-differential equation with delay on a semiaxis},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--64},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/}
}
TY  - JOUR
AU  - S. Iskandarov
AU  - A. Khalilov
TI  - Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 62
EP  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/
LA  - ru
ID  - VMUMM_2023_3_a9
ER  - 
%0 Journal Article
%A S. Iskandarov
%A A. Khalilov
%T Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 62-64
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/
%G ru
%F VMUMM_2023_3_a9
S. Iskandarov; A. Khalilov. Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 62-64. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/

[1] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959

[2] Levin J.J., “The asymptotic behavior of the solution of a Volterra equation”, Proc. Amer. Math. Soc., 14 (1963), 534–541 | DOI | MR | Zbl

[3] Vinokurov V.R., “Asimptoticheskoe povedenie reshenii odnogo klassa integro-differentsialnykh uravnenii Volterra”, Differents. uravneniya, 3:10 (1967), 1732–1744 | MR | Zbl

[4] Levin J.J., “Nonlinear Volterra equation not of convolution type”, J. Diff. Equat., 4 (1968), 176–186 | DOI | MR | Zbl

[5] Burton T.A., Volterra Integral and Differential Equations, Acad. Press, N.Y. a.o., 1983 | MR | Zbl

[6] Iskandarov S., Metod vesovykh i srezyvayuschikh funktsii i asimptoticheskie svoistva reshenii integro-differentsialnykh i integralnykh uravnenii tipa Volterra, Ilim, Bishkek, 2002 | MR

[7] Martynyuk A.A., Kato D., Shestakov A.A., Ustoichivost dvizheniya: metod predelnykh uravnenii, Naukova dumka, Kiev, 1990 | MR

[8] Kordunyanu K., “Primenenie differentsialnykh neravenstv v teorii ustoichivosti”, An. sti. Univ. Iasi. Sec. 1. A, 6 (1960), 47–58

[9] Wazewski T., “Systemes des equations et des inequalites differentielles ordinaires aux deuxiemes membres monotones et leurs applications”, Ann. soc. math. Pol., 23 (1950), 112–166 | MR | Zbl

[10] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Per. s angl., pod red. V. V. Rumyantseva, Mir, M., 1980 | MR