Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 62-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are established to ensure the estimation, boundedness, power-law absolute integrability on the semiaxis, the tendency to zero under the tendency to infinity of the independent variable of all solutions of the linear Volterra integrodifferential equation of the first order with delay. For this purpose, a generalized Lyapunov functional is constructed. An illustrative example is presented.
@article{VMUMM_2023_3_a9,
     author = {S. Iskandarov and A. Khalilov},
     title = {Method of {Lyapunov} functionals for a first order linear {Volterra} integro-differential equation with delay on a semiaxis},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--64},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/}
}
TY  - JOUR
AU  - S. Iskandarov
AU  - A. Khalilov
TI  - Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2023
SP  - 62
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/
LA  - ru
ID  - VMUMM_2023_3_a9
ER  - 
%0 Journal Article
%A S. Iskandarov
%A A. Khalilov
%T Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2023
%P 62-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/
%G ru
%F VMUMM_2023_3_a9
S. Iskandarov; A. Khalilov. Method of Lyapunov functionals for a first order linear Volterra integro-differential equation with delay on a semiaxis. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2023), pp. 62-64. http://geodesic.mathdoc.fr/item/VMUMM_2023_3_a9/